背包3讲总结

刚刚学习完了三种背包
觉得自己学的还不错差得很
就想发片总结

在这里插入图片描述

01背包问题

题目描述

给定n个物品,第i个物品需要耗费W[i]的花费(容量),拥有C[i]的价值.你有一个容量为V的背包.
问怎么装使得所装价值最大.每个物品只有一个.


思路

每件物品只有两种可能,一种是选,一种是不选,所以分情况讨论即可。
用子问题定义状态:即f [ i ] [ j ]表示前i件物品恰放入一个容量为j的背包可以获得的最大价值。则其状态转移方程便是:

f[i][j]=max(f[i−1][j],f[i−1][j−c[i]]+w[i])

以上方法的时间和空间复杂度均为O( V ∗ N ),其中时间复杂度已经不能再优化了,但空间复杂度却可以优化到O( N )。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i = 1… N,每次算出来二维数组f [ i ] [ 0… V ]的所有值。那么,如果只用一个数组f [ 0… V ],能不能保证第i ii次循环结束后f [ j ] f[j]f[j]中表示的就是我们定义的状态f [ i ] [ j ]呢?f [ i ] [ j ]是由f [ i − 1 ] [ j ]和f [ i − 1 ] [ j − c [ i ] ]两个子问题递推而来,能否保证在推f [ i ] [ j ]时(也即在第i ii次主循环中推f [ j ] f[j]f[j]时)能够得到f [ i − 1 ] [ j ] 和f [ i − 1 ] [ j − c [ i ] ]的值呢?事实上,这要求在每次主循环中我们以j = V . . . 0的顺序推f [ j ],这样才能保证推f [ j ]时f [ j − c [ i ] ]保存的是状态f [ i − 1 ] [ j − c [ i ] ]的值。至于为什么下面有详细解释。代码如下:

for (int i = 1; i <= n; i++)
    for (int j = V; j >= 0; j--)
        f[j] = max(f[j], f[j - c[i]] + w[i]);

代码

#include<bits/stdc++.h>
using namespace std;
int c[205], f[5005], v[205], t, m;
int main()
{
	cin >> t >> m;
	for(int i = 1; i <= m; i++) cin >> c[i] >> v[i];
	for(int i = 1; i <= m; i++) {
       for(int j = t;j >= c[i]; j--) {
            f[j] = max(f[j], f[j - c[i]] + v[i]);
       }
    }
    cout<<f[t];
	return 0;
}


完全背包问题

题目

有 N 种物品和一个容量为 V 的背包,每种物品都有无限件可用。放入第 i 种物品
的费用是 C[i],价值是 W[i]。求解:将哪些物品装入背包,可使这些物品的耗费的费用总
和不超过背包容量,且价值总和最大。


思路

这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令f [ i ] [ j ]表示前i种物品恰放入一个容量为V的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:

f[i][j]=max(f[i−1][j−k∗c[i]]+k∗w[i])0≤k∗c[i]≤j

完全背包问题有一个很简单有效的优化,是这样的:若两件物品i ii、j jj满足c [ i ] ≤ c [ j ]且w [ i ] ≥ w [ j ] ,则将物品j jj去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j jj换成物美价廉的i ii,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。代码如下:

for (int i = 1; i <= n; i++)
    for (int j = c[i]; j <= V; j++)
        f[j] = max(f[j], f[j - c[i]] + w[i]);

代码


#include<bits/stdc++.h>
using namespace std;
int c[205], f[5005], v[205], t, m;
int main()
{
	cin >> t >> m;
	for(int i = 1; i <= m; i++) cin >> c[i] >> v[i];
	for(int i = 1; i <= m; i++) {
       for(int j = t;j >= c[i]; j--) {
            f[j] = max(f[j], f[j - c[i]] + v[i]);
       }
    }
    cout<<f[t];
	return 0;
}


多重背包问题

题目

有 N 种物品和一个容量为 V 的背包。第 i 种物品最多有 M[i] 件可用,每件耗费的
空间是 C[i],价值是 W[i]。求解将哪些物品装入背包可使这些物品的耗费的空间总和不超
过背包容量,且价值总和最大。

思路

比如第i件物品有s个,我可以把相同种类的物品的进行合并,比如我拿出两件合并出一个新的物品,我拿出三件合并出一个新的物品,以此类推,我拿出s个合并出一个新的物品。基于这种思想,我们把第i件的s个物品转换为s种体积各不相同的物品,然后在用01背包的思想,求出最优解,动态转移方程为:

F[i,v] = max{F[i − 1, v − k ∗ C[i]] + k ∗ W[i] | 0 ≤ k ≤ M[i]}
将多重背包转换成0-1背包问题:

第i物体有 s[i]个,这里将其看作体积和价值都相同但不同的物体。即在输入 v [ i ] , w [ i ]时重复输入第i个物体 s[i]次。

代码

#include<bits/stdc++.h>
using namespace std;
int n,m;
int dp[1005];
int main()
{
    cin>>n>>m;
    while(n--)
    {
        int v,w,s;
        cin>>v>>w>>s;
        //每一次输入都可以看作有s个物体的0-1背包问题
        while(s--) //每多一次循环相当于多考虑一种物品的情况。
        {
            for(int j=m;j>=v;j--)
                dp[j]=max(dp[j],dp[j-v]+w);
        }
    }
    cout<<dp[m];
    return 0;
}

结尾

希望对大家有用,如果觉得好的话请大佬点个赞

谢谢大家

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值