文章目录
参考:背包九讲(度娘自行搜索)
还有b站有个背包九讲的视频也讲的挺好的: 背包九讲专题_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili
0-1背包
0-1背包,最简单直白的背包问题,但也是最重要的(因为后续很多种背包问题都会转化为0-1背包问题进行解答),每个物品只有选 / 不选两种选项。
0-1背包的各种类型(最大值/最小值,true/false,组合数/排列数)其实状态转移的逻辑都是相似的,无非就是取最优值的时候根据要求max()/min()/累加/取或等。
下面用到的题目在这儿都能找到:题库 - AcWing,就不一一贴链接了。
看个例子:2. 01背包问题 - AcWing题库
二维dp
先从暴力的二维dp入手,因为二维dp其实更容易理解,状态转移逻辑更加直白。
- 状态: 可选物品和背包容量
- 决策: 选 / 不选
- dp数组含义: d p [ i ] [ j ] dp[i][j] dp[i][j]表示,前i个物品,背包容量为j时,能够获取的最大价值
- 状态转移方程: 根据决策分类讨论,对于第 i 件物品,
不选: d p [ i ] [ j ] = d p [ i − 1 ] [ j ] dp[i][j] = dp[i-1][j] dp[i][j]=dp[i−1][j]
选: d p [ i ] [ j ] = d p [ i − 1 ] [ j − v [ i ] ] + w [ i ] dp[i][j] = dp[i-1][j-v[i]] + w[i] dp[i][j]=dp[i−1][j−v[i]]+w[i]
这儿注意:当背包剩余容量j < v[i]
时,只有不选一种决策,所以:
j >= v[i]
时:
d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [