实体定位文献阅读

本文介绍了跨语言知识图谱实体对齐的多种方法,包括联合嵌入、多语言知识图嵌入、基于图卷积网络的对齐、迭代对齐等。这些方法利用知识图谱的结构和属性信息,通过学习实体和关系的嵌入,实现不同语言知识库的实体对齐。实验表明,这些方法在对齐效果上表现出优势。
摘要由CSDN通过智能技术生成

本文参照文章来源于THU-KEG
相关文章PDF百度网盘资源可点击:链接,提取码为:

1、《A Joint Embedding Method for EntityAlignment of Knowledge Bases》

知识库实体对齐的联合嵌入方法
请添加图片描述

  • 具体步骤:
    (1) 提出了一种新的模型,该模型联合学习多个知识库在统一向量空间中的嵌入,仅使用知识库的结构信息来对齐知识库中的实体。
    (2) 基于真实的大规模知识库构建了两个用于知识库对齐任务的数据集:FB15K数据集和DBpedia Freebase数据集,它们具有丰富的关系和丰富的结构信息。
    (3) 在数据集上进行了实验,实验结果表明我们的方法是有效的。
  • 核心思想:
    使用简单的策略来生成多个实体对齐,作为种子实体,计算联合嵌入。
    请添加图片描述
  • baseline提升原因:
    请添加图片描述

2、《Multilingual Knowledge Graph Embeddings forCross-lingual Knowledge Alignment》

用于跨语言知识对齐的多语言知识图嵌入
请添加图片描述

  • 提出背景可见上文,具体工作如下:
    (1)通过在分离的嵌入空间中对每种语言的实体和关系进行编码,MTransE(Multiple TransE)为每种嵌入向量提供了到其他空间中的跨语言对应物的转换,同时保留了单语嵌入的功能。
    (2)使用三种不同的技术来表示跨语言转换,即轴校准、平移向量和线性转换,并使用不同的损失函数导出MTransE的五个方差。
    (3)探讨了MTransE如何预先提供其单语counter部分TransE的关键属性。
  • 数据:
    本节将报告三语数据集swk3l的实验结果。WK3l包含DBpedia ’ dbo:Persondomain下的英语(En)、法语(Fr)和德语(De)知识图
  • 知识图嵌入:
    请添加图片描述
    将实体和关系转化为连续的向量空间,从而简化操作,同时保留KG的原有的结构。那些实体和关系嵌入能进一步应用于各种任务中,如KG补全、关系提取、实体分类和实体解析。
    TransE模型:
    知识图谱嵌入(KGE):方法和应用的综述
    请添加图片描述
    请添加图片描述

请添加图片描述
请添加图片描述
请添加图片描述

请添加图片描述

3、《Cross-lingual Entity Alignment viaJoint Attribute-Preserving Embedding》

基于联合属性保留嵌入的跨语言实体对齐(JAPE)
请添加图片描述
参考文章:
实体对齐1.ISWC 2017:(JAPE)Cross-lingual Entity Alignment via Joint Attribute-Preserving Embedding

  • 创新点
    请添加图片描述
    将两个KBs联合嵌入在一起,并利用属性嵌入进行改进

请添加图片描述
创新一:TransE实体与关系三元组的稀疏性,所以将属性值抽象为范围类型。
请添加图片描述
创新二:考虑了负三元组,减少嵌入中错误的产生
请添加图片描述

  • 如何计算联合属性:
    (1)属性嵌入,通过预测上下文学习词嵌入请添加图片描述
    (2)实体相似度计算
    请添加图片描述
    (3)联合属性保留
    请添加图片描述
    (4)最终目标函数
    请添加图片描述

4、《Iterative Entity Alignment via Joint Knowledge Embeddings》

基于联合知识嵌入的迭代实体对齐
请添加图片描述
参考文章:实体对齐2.IJCAI 2017:(IPTransE)Iterative Entity Alignment via Joint Knowledge Embeddings

  • 创新点:
    提出了一种迭代和参数共享的方法来提高对准性能
  • 本文方法:
    (1)知识嵌入
    利用基于翻译的KRL(Knowledge Representation Learning)学习实体和关系的嵌入。
    (2)联合嵌入。根据种子集将不同KG的知识嵌入映射到联合语义空间。
    (3)迭代对齐。通过考虑那些在方法中越来越多地发现的高度自信的对齐实体,迭代地对齐实体及其对应实体,并更新联合知识嵌入。
    请添加图片描述
    详细操作:
    (1)知识嵌入:用PTransE,相当于考虑多路径的TransE
    请添加图片描述
    (2)联合嵌入
    请添加图片描述
    (3)迭代对齐:找到最近实体进行对齐,硬对齐(对那些新对齐实体应用参数共享规则);软对齐(为每个新对齐实体分配一个可靠性得分)
    请添加图片描述
  • 算法优点:
    (1)在各种联合嵌入方法中,参数共享模型优于线性变换模型和基于平移的模型。这验证了实体和它们的对应物共享相同的内在知识的事实。
    (2)在各种迭代对齐方法中,软对齐模型的性能始终优于硬对齐模型和其他基线。原因是我们之前分析过的硬对齐会受到错误传播的影响。
    (3)基于PTransE的方法优于相应的基于TransE的方法

请添加图片描述
(没太弄懂参数共享,怎么确定谁和谁参数共享?通过对齐,能对齐就直接共享一样的参数?)

5、《Bootstrapping Entity Alignment with Knowledge Graph Embedding》

使用知识图嵌入的引导实体对齐
请添加图片描述
参考文章:
实体对齐3.IJCAI 2018:(BootEA)Bootstrapping Entity Alignment with Knowledge Graph Embedding
论文简读-BootEA-《Bootstrapping Entity Alignment with Knowledge Graph Embedding》
实体对齐 算法_[2017]Bootstrapping Entity Alignment with Knowledge Graph Embeddin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一拳Marx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值