文章目录
1、《Recent advances in deep learning based dialogue systems: a systematic survey》
基于深度学习的对话系统的最新进展:一个系统的调查
- 从两个维度分析对话系统
从模型类型的角度,讨论了对话系统中广泛使用的各种模型的原理、特点和应用
从系统类型的角度,我们将面向任务的对话系统和开放领域的对话系统作为两种研究流进行讨论,为相关的热点问题提供洞察 - 根据应用分析对话系统
(1)面向任务的对话系统(TOD)
自然语言理解、对话状态跟踪、策略学习和自然语言生成
(2)开放域对话系统(OOD)
生成系统、基于检索的系统和集成系统 - 传统的对话系统
2、《RNG-KBQA: Generation Augmented Iterative Ranking forKnowledge Base Question Answering》
- KBQA
参考文章:
BDBC-KG-NLP/QA-Survey-CN
(一)数据部分
(1)KBQA的全称是基于知识库问答(Knowledge Base Question Answering),即给定自然语言问题,通过对问题进行语义理解和解析,进而利用知识库进行查询、推理得出答案。
知识库是用于知识管理的一种特殊的数据库,用于相关领域知识的采集、整理及提取。知识库中的知识源于领域专家,是求解问题所需领域知识的集合,包括一些基本事实、规则和其他相关信息。
知识库中蕴含着丰富的信息及各种关系连接,将其构建成知识图谱,将得到