对话系统文献阅读

本文深入探讨了基于深度学习的对话系统,包括任务导向型和开放域对话系统的架构与挑战。此外,还介绍了知识库问答系统(KBQA)的工作原理,涉及数据准备、问答流程及回答生成的多种方法。最后提到了ConvLab-2,这是一个用于对话系统构建、评估和诊断的开源工具包,提供丰富统计和错误分析功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、《Recent advances in deep learning based dialogue systems: a systematic survey》

基于深度学习的对话系统的最新进展:一个系统的调查请添加图片描述

  • 从两个维度分析对话系统
    模型类型的角度,讨论了对话系统中广泛使用的各种模型的原理、特点和应用
    系统类型的角度,我们将面向任务的对话系统和开放领域的对话系统作为两种研究流进行讨论,为相关的热点问题提供洞察
  • 根据应用分析对话系统
    (1)面向任务的对话系统(TOD)
    自然语言理解、对话状态跟踪、策略学习和自然语言生成
    (2)开放域对话系统(OOD)
    生成系统、基于检索的系统和集成系统
  • 传统的对话系统

2、《RNG-KBQA: Generation Augmented Iterative Ranking forKnowledge Base Question Answering》

  • KBQA
    参考文章:
    BDBC-KG-NLP/QA-Survey-CN
    (一)数据部分
    (1)KBQA的全称是基于知识库问答(Knowledge Base Question Answering),即给定自然语言问题,通过对问题进行语义理解和解析,进而利用知识库进行查询、推理得出答案。
    知识库是用于知识管理的一种特殊的数据库,用于相关领域知识的采集、整理及提取。知识库中的知识源于领域专家,是求解问题所需领域知识的集合,包括一些基本事实、规则和其他相关信息。
    知识库中蕴含着丰富的信息及各种关系连接,将其构建成知识图谱,将得到
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一拳Marx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值