人工智能100问 - 3极大似然法是什么?与最小二乘的区别?

我们用机器学习做模型,需要确定模型的各个参数。模型实际的参数我们是无从得知的,我们只能尽最大可能对这些参数进行估计,极大似然法就是使用最广泛的估计方法之一。

一、什么是极大似然?

极大似然估计从字面上来理解可以拆成三个词,分别是“极大”、“似然”、“估计”,分别的意思如下:
极大:最大的概率
似然:看起来是这个样子的
估计:就是这个样子的
连起来就是,最大的概率看起来是这个样子的那就是这个样子的。怎么样,是不是很朴素?

极大似然法(the Principle of Maximum Likelihood)是由高斯和费希尔先后提出的,这个方法的基础是极大似然原理。
极大似然法的原理是:样本所展现的状态就是所有可能状态中出现概率最大的那个状态。

二、举个栗子

三、怎么计算?

极大似然的计算简单来说可以分为3步:
(1)写出似然函数;
(2)求导数;
(3)导数为0,解方程。

以从箱子里取出小球为例子:箱子里有一定数量的小球,每次随机拿一个球,查看颜色后放回,已知拿到白球的概率为40%到80%之间,拿了四次,3次是白球,1次是黑球。求拿到白球概率的极大似然估计。

解题:这里是有放回的拿取,是一个独立重复事件。我们记拿到白球为事件x,取到时为1,没有取到则为0。

  • 1)写出似然函数:我们假设θ是二项分布的参数,那么在给定一组结果的情况下,似然函数L可表达为:

  • 2)因为这个式子太复杂,是乘在一起的,而lnL和L在同一位置取得最大值,所以极大似然估计值也可以由对数似然方程求得。所以我们两边取对数,In L = In θ^h+In (1- θ)^(n-h)。3)对上面的函数式,取一阶导数,令导数=0,可得当θ=h/n时似然函数取最大值。h是x=1的次数,n是实验总数。解出来的值为0.75,这就是我们当前对白球概率的极大似然估计。

  • 3)对上面的函数式,取一阶导数,令导数=0,可得当θ=h/n时似然函数取最大值。h是x=1的次数,n是实验总数。
    解出来的值为0.75,这就是我们当前对白球概率的极大似然估计。

PS: 当方程无解时,要从定义出发,考虑L(θ)的单调性,找到max(L(θ))对应的估计值。

四、与最小二乘的区别?

  • 1)最小二乘是求计算值与实际值的欧式距离最小的参数,是从lost function的角度去看的。而极大似然是求目前这个观测数据出现概率最大的参数,是从概率的角度去看。
  • 2)极大似然是要有分布假设的,而最小二乘没有这个假设。
  • 3)当极大似然的分布假设为高斯分布的时候,是和最小二乘法等价的。
  • 1
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论
<p> <strong><span style="color:#337FE5;font-size:16px;"><b><a target="_blank" href="https://edu.csdn.net/bundled/detail/308"></a><a target="_blank" href="https://edu.csdn.net/bundled/detail/308"><span> </span></a></b></span></strong> </p> <p class="ql-long-39788408" style="font-size:11pt;color:#494949;"> <strong><b><a class="ql-link ql-size-12 ql-author-39788408" href="https://edu.csdn.net/bundled/detail/298" target="_blank"><strong>[本课程属于AI完整学习路线套餐,该套餐已“硬核”上线,点击立即学习!]</strong></a> </b></strong> </p> <p> <br /> </p> <p> <br /> </p> <p> <strong><span style="color:#337FE5;font-size:16px;"><img src="https://img-bss.csdnimg.cn/202011090215376808.png" alt="" /><br /> </span></strong> </p> <p> <strong><span style="color:#337FE5;font-size:16px;"><br /> </span></strong> </p> <p> <strong><span style="color:#337FE5;font-size:16px;">【为什么学习数学?】</span></strong> </p> <p> <span style="color:#797979;font-family:微软雅黑, 黑体, 'Microsoft YaHei', 宋体, sans-serif;font-size:13px;background-color:#ffffff;"><span style="color:#000000;font-family:微软雅黑, 黑体, "font-size:13px;background-color:#FFFFFF;">人工智能的本质是数学,</span><span style="color:#000000;">网上有很多AI课程,只蜻蜓点水的介绍一下算法背后的数学理论,知识点比较混乱,不成体系,学了以后一旦在实战遇到难点就不知道该怎么办了。比方说老师遇到过用很多层MLP预测用户转化率的工程师,只是单纯的追求模型的“复杂度”,而忘记了底层数学的本质回归题超过3层神经网络足以拟合空间中任一曲线,耗费了大量的运算资源却造成了模型的过拟合。</span></span> </p> <p> <span style="color:#797979;font-family:微软雅黑, 黑体, 'Microsoft YaHei', 宋体, sans-serif;font-size:13px;background-color:#ffffff;"><br /> </span> </p> <p> <span style="color:#000000;font-family:微软雅黑, 黑体, "font-size:13px;background-color:#FFFFFF;">很多同学因为不理解AI底层的数学和理论,知其然不知其所以然,遇到题不知道如何从根源上去思考排查解决题,而是花了大量时间做一个“调参侠”,期望蒙中一个优化组合,可是调参空间之巨大如果没有方向随机的搜索和买彩票一样。但是专门的数学课学习起来非常抽象和枯燥,而且其中大量内容和人工智能关系不大。因此在设计这门专为人工智能服务的数学课,讲解从人工智能用到的底层的数学逻辑,让大家可以真正理解数学知识。</span> </p> <p> <span style="color:#797979;font-family:微软雅黑, 黑体, 'Microsoft YaHei', 宋体, sans-serif;font-size:13px;background-color:#ffffff;"><br /> </span> </p> <p> <span style="color:#337FE5;font-size:16px;"><strong>【讲师介绍</strong></span><span style="color:#337FE5;font-size:16px;"><strong>】</strong></span> </p> <p> <span style="color:#797979;font-family:微软雅黑, 黑体, 'Microsoft YaHei', 宋体, sans-serif;font-size:13px;background-color:#ffffff;"> </span> </p> <p style="font-family:'PingFang SC', 'Hiragino Sans GB', Arial, 'Microsoft YaHei', Verdana, Roboto, Noto, 'Helvetica Neue', sans-serif;color:#222226;font-size:14px;background-color:#FFFFFF;"> 褚英昊  技术总监 </p> <p style="font-family:'PingFang SC', 'Hiragino Sans GB', Arial, 'Microsoft YaHei', Verdana, Roboto, Noto, 'Helvetica Neue', sans-serif;color:#222226;font-size:14px;background-color:#FFFFFF;"> 深造于美国圣地亚哥国家超级计算中心,毕业后归国曾服务于世界某500强中国区AI Lab,是人工智能+智能制造领域的专家。先后发表国际期刊21篇(其中SCI收录17篇),第一作者发明专利11份。 </p> <br /> <span style="color:#337FE5;font-size:16px;"><strong>【学习目标】</strong></span><span style="font-size:16px;"> </span><br /> <p> <span style="color:#797979;font-family:微软雅黑, 黑体, 'Microsoft YaHei', 宋体, sans-serif;font-size:13px;background-color:#ffffff;"><span style="color:#000000;">1、更加高效学习、更好的理解AI知识</span><br /> <span style="color:#000000;"> 2、在找工作中在众多的套工程的“调参侠”中脱颖而出,获得面试官的重视</span><br /> <span style="color:#000000;"> 3、在实际工作和开发中,遇到题能理解题的本质,真正做到精准而高效的解决题,获得领导的倚重</span></span> </p> <p> <span style="color:#797979;font-family:微软雅黑, 黑体, 'Microsoft YaHei', 宋体, sans-serif;font-size:13px;background-color:#ffffff;"><br /> </span> </p> <p> <span style="color:#337FE5;font-family:微软雅黑,黑体,"font-size:16px;background-color:#FFFFFF;"><strong><span style="font-size:16px;">【梳理数学与AI知识之间的关联】</span></strong></span> </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202010190752485644.png" /><span style="color:#797979;font-family:微软雅黑, 黑体, 'Microsoft YaHei', 宋体, sans-serif;font-size:13px;background-color:#ffffff;"><br /> </span> </p> <p> <br /> </p> <p> <span style="color:#337FE5;font-family:微软雅黑,黑体,"font-size:16px;background-color:#FFFFFF;"><strong><span style="font-size:16px;">【专门为数学设计的项目案例】</span><br /> </strong></span> </p> <p> <span style="color:#797979;font-family:微软雅黑, 黑体, 'Microsoft YaHei', 宋体, sans-serif;font-size:13px;background-color:#ffffff;"><img alt="" src="https://img-bss.csdnimg.cn/202010130141183119.png" /><br /> </span> </p> <p> <span style="color:#797979;font-family:微软雅黑, 黑体, 'Microsoft YaHei', 宋体, sans-serif;font-size:13px;background-color:#ffffff;"><img alt="" src="https://img-bss.csdnimg.cn/202010130141303659.png" /></span> </p> <p> <br /> </p> <p> <span style="color:#797979;font-family:微软雅黑, 黑体, 'Microsoft YaHei', 宋体, sans-serif;font-size:13px;background-color:#ffffff;"> </span> </p>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI二师兄

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值