多头注意力

多头注意力融合不同的知识子空间,通过并行计算多个独立的注意力汇聚,捕捉序列中的多种依赖关系。每个注意力头关注输入的不同部分,用MXNet的D2L库实现了一个MultiHeadAttention类,包括线性变换和注意力汇聚的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 多头注意力融合了来自于多个注意力汇聚的不同知识,这些知识的不同来源于相同的查询、键和值的不同的子空间表示。

  • 基于适当的张量操作,可以实现多头注意力的并行计算。

在实践中,当给定相同的查询、键和值的集合时, 我们希望模型可以基于相同的注意力机制学习到不同的行为, 然后将不同的行为作为知识组合起来, 捕获序列内各种范围的依赖关系 (例如,短距离依赖和长距离依赖关系)。 因此,允许注意力机制组合使用查询、键和值的不同 子空间表示(representation subspaces)可能是有益的。

为此,与其只使用单独一个注意力汇聚, 我们可以用独立学习得到的ℎ组不同的 线性投影(linear projections)来变换查询、键和值。 然后,这ℎ组变换后的查询、键和值将并行地送到注意力汇聚中。 最后,将这ℎ个注意力汇聚的输出拼接在一起, 并且通过另一个可以学习的线性投影进行变换, 以产生最终输出。 这种设计被称为多头注意力(multihead attention) (Vaswani et al., 2017)。 对于ℎ个注意力汇聚输出,每一个注意力汇聚都被称作一个(head)。 图10.5.1 展示了使用全连接层来实现可学习的线性变换的多头注意力。

1.模型

基于这种设计,每个头都可能会关注输入的不同部分, 可以表示比简单加权平均值更复杂的函数。

pip install mxnet==1.7.0.post1
pip install d2l==0.15.0
import math
from mxnet import autograd, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

2. 实现

#@save
class MultiHeadAttention(nn.Block):
    """多头注意力"""
    def __init__(self, num_hiddens, num_heads, dropout, use_bias=False,
                 **kwargs):
        super(MultiHeadAttention, self).__init__(**kwargs)
        self.num_heads = num_heads
        self.attention = d2l.DotProductAttention(dropout)
        self.W_q = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
        self.W_k = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
        self.W_v = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)
        self.W_o = nn.Dense(num_hiddens, use_bias=use_bias, flatten=False)

    def forward(self, queries, keys, values, valid_lens):
        # queries,keys,values的形状:
        # (batch_size,查询或者“键-值”对的个数,num_hiddens)
        # valid_lens 的形状:
        # (batch_size,)或(batch_size,查询的个数)
        # 经过变换后,输出的queries,keys,values 的形状:
        # (batch_size*num_heads,查询或者“键-值”对的个数,
        # num_hiddens/num_heads)
        queries = transpose_qkv(self.W_q(queries), self.num_heads)
        keys = transpose_qkv(self.W_k(keys), self.num_heads)
        values = transpose_qkv(self.W_v(values), self.num_heads)

        if valid_lens is not None:
            # 在轴0,将第一项(标量或者矢量)复制num_heads次,
            # 然后如此复制第二项,然后诸如此类。
            valid_lens = valid_lens.repeat(self.num_heads, axis=0)

        # output的形状:(batch_size*num_heads,查询的个数,
        # num_hiddens/num_heads)
        output = self.attention(queries, keys, values, valid_lens)

        # output_concat的形状:(batch_size,查询的个数,num_hiddens)
        output_concat = transpose_output(output, self.num_heads)
        return self.W_o(output_concat)

为了能够使多个头并行计算, 上面的MultiHeadAttention类将使用下面定义的两个转置函数。 具体来说,transpose_output函数反转了transpose_qkv函数的操作。

#@save
def transpose_qkv(X, num_heads):
    """为了多注意力头的并行计算而变换形状"""
    # 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)
    # 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,
    # num_hiddens/num_heads)
    X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)

    # 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,
    # num_hiddens/num_heads)
    X = X.transpose(0, 2, 1, 3)

    # 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,
    # num_hiddens/num_heads)
    return X.reshape(-1, X.shape[2], X.shape[3])


#@save
def transpose_output(X, num_heads):
    """逆转transpose_qkv函数的操作"""
    X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
    X = X.transpose(0, 2, 1, 3)
    return X.reshape(X.shape[0], X.shape[1], -1)

下面使用键和值相同的小例子来测试我们编写的MultiHeadAttention类。 多头注意力输出的形状是(batch_sizenum_queriesnum_hiddens)。

num_hiddens, num_heads = 100, 5
attention = MultiHeadAttention(num_hiddens, num_heads, 0.5)
attention.initialize()

batch_size, num_queries = 2, 4
num_kvpairs, valid_lens =  6, np.array([3, 2])
X = np.ones((batch_size, num_queries, num_hiddens))
Y = np.ones((batch_size, num_kvpairs, num_hiddens))
attention(X, Y, Y, valid_lens).shape
(2, 4, 100)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流萤数点

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值