matlab--交叉验证函数crossvalind

本文详细介绍了如何在Matlab中使用crossvalind函数进行交叉验证,通过实例展示了十折交叉验证的具体操作流程,包括数据集的加载、标签的划分、模型的训练与测试,以及错误率的评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

crossvalind

参考博客:
crossvalind函数详解
matlab官网讲解

 load fisheriris
 indices = crossvalind('Kfold',species,10);
 cp = classperf(species);
 for i = 1:10
    test = (indices == i); 
    train = ~test;
    class = classify(meas(test,:),meas(train,:),species(train,:));
    classperf(cp,class,test);
end
 cp.ErrorRate

下面逐行讲解一下:
首先load fisheriris将数据集载入,可以得到meas和indices两个数据集,分别为原始的数据集和他们的标签。
meas数据集数据集标签
可以看到数据集有150个样本,每一行是一个样本数据。
接着用交叉验证函数做十次交叉验证,将标签均分成十份,每一份打上不同的记号,记号为一个正整数。

indices = crossvalind(‘Kfold’,species,10);

可以得到150个数被不同的数打标签,同样的数就是一份,一共是十份,每一份有15个数。
在这里插入图片描述
接着,对标签集进行分析,可以参考classpef

cp = classperf(species);

接下来这段代码就好理解了,十次循环,每一次取其中一份作为测试集,其余的做训练集,使用classify最近邻方法进行分类,并评估错误率。

for i = 1:10
    test = (indices == i); 
    train = ~test;
    class = classify(meas(test,:),meas(train,:),species(train,:));
    classperf(cp,class,test);
end
cp.ErrorRate

取其中的i=1的情况,分别看下得到的结果:
在这里插入图片描述 在这里插入图片描述
在这里插入图片描述

关于classify函数的解释 classify

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值