r语言
文章平均质量分 66
LiuYuan_BJTU
这个作者很懒,什么都没留下…
展开
-
R语言入门(1)时间序列分析
时间序列分析使用软件为Rstudio, 参考CRAN中时间序列分析分析函数和package,拿手上的数据练习一下时间序列分析。1、原始数据说明选择连续9天的数据,共2025条,时间间隔为5分钟。具体情况如下: 2、平稳性检验所谓平稳,是指因变量围绕着一个常数上下波动。更学术一点,就是是说统计特性(mean,variance,correlation等)不会随着时间窗口的不同而变化。2.1 时间序列原创 2017-03-27 23:00:33 · 28520 阅读 · 10 评论 -
R语言入门(3)时间序列模型的误差分析
1、绘制拟合曲线由前两章可知,时间序列分析模型为: Yt=0.9711×Yt−1−0.2664×ut−0.0793×ut−2+utY_t=0.9711\times Y_{t-1}-0.2664\times u_t-0.0793\times u_{t-2}+u_t 下面根据该模型来绘制拟合曲线,并计算拟合值与实际值的误差,代码如下:n <- length(indata)u <- matrix(0原创 2017-04-11 23:56:46 · 5657 阅读 · 0 评论 -
R语言入门(2)时间序列分析原理
1、随机游走模型1.1 基本介绍随机游走模型是时间序列分析中最基本的概念,是一个著名的非平稳序列。公式如下: Yt=Yt−1+utY_t = Y_{t-1} + u_t 式中,utu_t是一个随机误差,我们通常假设它服从(0,1)的正态分布。根据公式,我们可以推导得出,随机游走模型的均值E(Yt)E(Y_t)是一个常量0,不随时间变化,而方差Var(Yt)=t×Var(u)Var(Y_t)=t\原创 2017-03-31 10:30:57 · 10637 阅读 · 0 评论 -
R语言入门(4)时间序列分析
参考这篇博客A Complete Tutorial on Time Series Modeling in R深入学习R语言在时间序列模型中的应用。1、导入时间序列数据> data(AirPassengers)该数据为某航空公司1949年至1960年每月的客流数据,数据结构如下:> AirPassengers Jan Feb Mar Apr May Jun Jul Aug Sep Oct N原创 2017-04-12 23:43:59 · 6779 阅读 · 0 评论