R语言入门(4)时间序列分析

本文介绍了使用R语言进行时间序列分析的过程,包括导入数据、属性分析、通过图示探索平稳性、确定ARIMA模型的阶数,并用模型对未来进行预测。通过ACF和PACF图确定(p,d,q)组合为(0,1,1),模型拟合优度良好,残差序列符合白噪声特征。" 105224205,7921988,Hadoop集群安装与配置指南,"['大数据', 'hadoop', '集群']
摘要由CSDN通过智能技术生成

参考这篇博客A Complete Tutorial on Time Series Modeling in R深入学习R语言在时间序列模型中的应用。

1、导入时间序列数据

> data(AirPassengers)

该数据为某航空公司1949年至1960年每月的客流数据,数据结构如下:

> AirPassengers
     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432

2、时间序列数据的属性分析

# 查看数据类型
> class(AirPassengers)
"ts"
> start(AirPassengers)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值