liuyuehui110的专栏

宁静致远!QQ2896056218

1的平方加2的平方....一直加到n的平方和是多少?有公式吗

平方和公式n(n+1)(2n+1)/6
即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:N^2=N的平方)
证明1+4+9+…+n^2=N(N+1)(2N+1)/6 
证法一(归纳猜想法):
1、N=1时,1=1(1+1)(2×1+1)/6=1 
2、N=2时,1+4=2(2+1)(2×2+1)/6=5 
3、设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6 
则当N=x+1时, 
1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2 
=(x+1)[2(x2)+x+6(x+1)]/6 
=(x+1)[2(x2)+7x+6]/6 
=(x+1)(2x+3)(x+2)/6 
=(x+1)[(x+1)+1][2(x+1)+1]/6 
也满足公式 
4、综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证. 
证法二(利用恒等式(n+1)^3=n^3+3n^2+3n+1):
(n+1)^3-n^3=3n^2+3n+1, 
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 

3^3-2^3=3*(2^2)+3*2+1 
2^3-1^3=3*(1^2)+3*1+1. 
把这n个等式两端分别相加,得: 
(n+1)^3-1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n, 
由于1+2+3+...+n=(n+1)n/2, 
代人上式得: 
n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n 
整理后得: 
1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6
阅读更多
版权声明:转载请标明出处! https://blog.csdn.net/liuyuehui110/article/details/77858108
个人分类: AI
所属专栏: 人工智能
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭