Calmar比率怎么计算?衡量收益风险比的新角度
什么是Calmar比率?
Calmar比率(Calmar Ratio)是衡量基金或投资策略风险调整后收益的指标,名字来源于它的发明人——对冲基金经理Terry W. Young的基金公司“California Managed Accounts Reports”(简称Calmar)。
简单来说,它告诉你:每承担一单位最大回撤,能赚多少钱。和夏普比率(Sharpe Ratio)不同,Calmar比率更关注最大回撤,而不是波动率。
为什么用Calmar比率?
如果你买过基金或股票,肯定经历过“赚了20%,结果一波大跌全吐回去”的情况。这时候,夏普比率可能还不错(因为波动率不算太高),但你的实际体验很糟糕。
Calmar比率直接盯住最大回撤——也就是你投资期间最惨的时候亏了多少。它特别适合用来评估高波动、高收益策略(比如CTA、对冲基金、趋势跟踪策略)。
Calmar比率的计算公式
公式很简单:
Calmar比率 = (年化收益率 - 无风险利率) / 最大回撤(取绝对值)
举个例子:
- 某基金过去3年年化收益15%
- 无风险利率(比如国债)2%
- 期间最大回撤-20%
那么它的Calmar比率 = (15% - 2%) / 20% = 0.65
一般来说:
- >1:收益风险比优秀
- 0.5~1:还行
- <0.5:风险可能没补偿到位
怎么查Calmar比率?
国内Wind、同花顺iFinD、私募排排网都能查。如果你自己算,可以用Python:
import pandas as pd
def calmar_ratio(returns, risk_free_rate=0.02, periods=252):
cumulative_returns = (1 + returns).cumprod()
peak = cumulative_returns.expanding().max()
drawdown = (cumulative_returns - peak) / peak
max_drawdown = drawdown.min()
annualized_return = (1 + returns.mean()) ** periods - 1
return (annualized_return - risk_free_rate) / abs(max_drawdown)
# 示例:假设你有一个日收益率序列daily_returns
calmar = calmar_ratio(daily_returns)
print(f"Calmar比率: {calmar:.2f}")
Calmar比率的局限性
- 依赖历史数据:如果最大回撤发生在很久以前,可能对当前策略参考性下降。
- 对计算周期敏感:用3年数据和5年数据算出来可能差很多。
- 不适用于低回撤策略:比如市场中性策略回撤小,Calmar比率可能虚高。
实战怎么用?
- 买基金时:别光看收益,对比同策略基金的Calmar比率,选“赚同样钱但跌得少”的。
- 量化回测:如果你的策略Calmar<0.3,可能要优化风控。
- 组合管理:用Calmar比率平衡高风险(股票)和低风险(债券)资产。
下次看到某基金宣传“年化收益30%”,记得问一句:“最大回撤多少?Calmar比率多少?”——这才是真正体现基金经理水平的数字。