前端AI集成实战:从TensorFlow.js到模型部署
🧑🏫 作者:全栈老李
📅 更新时间:2025 年 5 月
🧑💻 适合人群:前端初学者、进阶开发者
🚀 版权:本文由全栈老李原创,转载请注明出处。
今天咱们聊聊前端工程师如何玩转AI——没错,用JavaScript就能搞机器学习!我是全栈老李,一个喜欢把复杂技术讲简单的实战派。最近发现不少前端同学对AI既好奇又害怕,其实真没想象中那么难,跟着老李走,30分钟让你亲手部署第一个AI模型!
为什么前端需要懂AI?
去年我给某电商做咨询,他们有个需求:让用户在手机上传自拍,自动推荐适合的眼镜款式。后端团队吭哧吭哧搞了两个月,结果用户等3秒才能看到推荐——直接流失40%用户!后来改用TensorFlow.js在前端直接处理,首屏时间降到800ms,转化率立竿见影提升。
这就是前端AI的价值:实时性和隐私保护。用户的照片不用上传服务器,在浏览器里就能完成分析。现在连Midjourney都出了网页版,AI前端化已经是大势所趋。
TensorFlow.js 三分钟极速入门
先看个最简单的例子——用预训练模型识别图片内容:
// 全栈老李提示:记得先在HTML引入<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@3.18.0/dist/tf.min.js"></script>
async function classifyImage(imgElement) {
// 加载谷歌预训练的MobileNet模型(约17MB)
const model = await tf.loadGraphModel('https://tfhub.dev/google/tfjs-model/imagenet/mobilenet_v3_small_100_224/classification/3/default/1');
// 将图片处理成模型需要的格式:224x224像素,归一化到[-1,1]
const tensor = tf.browser.fromPixels(imgElement)
.resizeNearestNeighbor([224, 224])
.toFloat()
.expandDims();
// 运行预测
const predictions = model.predict(tensor);
const top5 = Array.from(predictions.dataSync())
.map((p, i) => ({
probability: p, className: IMAGENET_CLASSES[i] }))
.sort((a, b) => b.probability - a.probability)
.slice(0, 5);
console.log('预测结果:'