- /*
- 烟台大学计算机学院
- 文件名称:3.cpp
- 作者:刘照京
- 完成日期:2017年11月30日
- 问题描述:Dijkstra算法的验证
- 输入描述:无
- 输出描述:某一顶点到其他各点最短路径
- 用到了graph.h
- */
- #include <stdio.h>
- #include <malloc.h>
- #include "graph.h"
- #define MaxSize 100
- void Ppath(int path[],int i,int v) //前向递归查找路径上的顶点
- {
- int k;
- k=path[i];
- if (k==v) return; //找到了起点则返回
- Ppath(path,k,v); //找顶点k的前一个顶点
- printf("%d,",k); //输出顶点k
- }
- void Dispath(int dist[],int path[],int s[],int n,int v)
- {
- int i;
- for (i=0; i<n; i++)
- if (s[i]==1)
- {
- printf(" 从%d到%d的最短路径长度为:%d\t路径为:",v,i,dist[i]);
- printf("%d,",v); //输出路径上的起点
- Ppath(path,i,v); //输出路径上的中间点
- printf("%d\n",i); //输出路径上的终点
- }
- else printf("从%d到%d不存在路径\n",v,i);
- }
- void Dijkstra(MGraph g,int v)
- {
- int dist[MAXV],path[MAXV];
- int s[MAXV];
- int mindis,i,j,u;
- for (i=0; i<g.n; i++)
- {
- dist[i]=g.edges[v][i]; //距离初始化
- s[i]=0; //s[]置空
- if (g.edges[v][i]<INF) //路径初始化
- path[i]=v;
- else
- path[i]=-1;
- }
- s[v]=1;
- path[v]=0; //源点编号v放入s中
- for (i=0; i<g.n; i++) //循环直到所有顶点的最短路径都求出
- {
- mindis=INF; //mindis置最小长度初值
- for (j=0; j<g.n; j++) //选取不在s中且具有最小距离的顶点u
- if (s[j]==0 && dist[j]<mindis)
- {
- u=j;
- mindis=dist[j];
- }
- s[u]=1; //顶点u加入s中
- for (j=0; j<g.n; j++) //修改不在s中的顶点的距离
- if (s[j]==0)
- if (g.edges[u][j]<INF && dist[u]+g.edges[u][j]<dist[j])
- {
- dist[j]=dist[u]+g.edges[u][j];
- path[j]=u;
- }
- }
- Dispath(dist,path,s,g.n,v); //输出最短路径
- }
- int main()
- {
- MGraph g;
- int A[7][7]=
- {
- {0,4,6,6,INF,INF,INF},
- {INF,0,1,INF,7,INF,INF},
- {INF,INF,0,INF,6,4,INF},
- {INF,INF,2,0,INF,5,INF},
- {INF,INF,INF,INF,0,INF,6},
- {INF,INF,INF,INF,1,0,8},
- {INF,INF,INF,INF,INF,INF,0}
- };
- ArrayToMat(A[0], 7, g);
- Dijkstra(g,0);
- return 0;
- }
运行结果:
学习心得:学会了求从一个顶点到其余各顶点的最短路径的算法。