“欧拉函数详解”附:证明

1.2.1 \large 1.2.1 1.2.1

钦定无需证明


1.2.2 \large1.2.2 1.2.2

显然 [ 1 , p ) ∩ Z [1,p)\cap \Z [1,p)Z 中所有数都与 p p p 互质,所以 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1


1.2.3 \large 1.2.3 1.2.3

p k p^k pk 的质因子只有 p p p ,所有与 p k p^k pk 不互质的数一定可以被 p p p 整除。
在小于 p k p^k pk 的数中,能被 p p p 整除的数有 p , 2 p , … , ( p k − 1 − 1 ) × p p,2p,\dots,(p^{k-1}-1)\times p p,2p,,(pk11)×p ,共 p k − 1 − 1 p^{k-1}-1 pk11 个。
所以 [ 1 , p k ) ∩ Z [1,p^k)\cap \Z [1,pk)Z 中与 p k p^k pk 互质的数的个数就是 ( p k − 1 ) − ( p k − 1 − 1 ) = p k − p k − 1 (p^k-1)-(p^{k-1}-1)=p^k-p^{k-1} (pk1)(pk11)=pkpk1 ,也就是 φ ( p k ) = p k − p k − 1 \varphi(p^k)=p^k-p^{k-1} φ(pk)=pkpk1


1.2.4 \large 1.2.4 1.2.4

X X X M M M 的简化剩余系,其中的元素用 x i x_i xi 来表示,元素个数为 φ ( M ) \varphi(M) φ(M)
Y Y Y N N N 的简化剩余系,其中的元素用 y i y_i yi 来表示,元素个数为 φ ( N ) \varphi(N) φ(N)
我们只需证明下面三点即可:
A : ( x i N + y i M , M N ) = 1 \color{green}\rm A: (x_iN+y_iM,MN)=1 A:(xiN+yiM,MN)=1
B : x i N + y i M 代 表 的 元 素 两 两 不 在 同 一 剩 余 系 内 \color{green}\rm B: x_iN+y_iM 代表的元素两两不在同一剩余系内 B:xiN+yiM
C : x i N + y i M 能 代 表 M N 的 简 化 剩 余 系 内 的 所 有 元 素 \color{green}\rm C: x_iN+y_iM 能代表 MN 的简化剩余系内的所有元素 C:xiN+yiMMN

  • 证 明 A \color{green}\rm 证明A A
    ( x i , M ) = 1 ⇒ ( x i N , M ) = 1 ⇒ ( x i N + y i M , M ) = 1 (x_i,M)=1 \Rightarrow (x_iN,M)=1 \Rightarrow (x_iN+y_iM,M)=1 (xi,M)=1(xiN,M)=1(xiN+yiM,M)=1
    ( y i , N ) = 1 ⇒ ( y i M , N ) = 1 ⇒ ( x i N + y i M , N ) = 1 (y_i,N)=1 \Rightarrow (y_iM,N)=1 \Rightarrow (x_iN+y_iM,N)=1 (yi,N)=1(y
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值