Description
桌面上放了N个平行于坐标轴的矩形,这N个矩形可能有互相覆盖的部分,求它们组成的图形的面积。
Input
输入第一行为一个数N(1≤N≤100),表示矩形的数量。下面N行,每行四个整数,分别表示每个矩形的左下角和右上角的坐标,坐标范围为–10^8到10^8之间的整数。
Output
输出只有一行,一个整数,表示图形的面积。
Sample Input
3
1 1 4 3
2 -1 3 2
4 0 5 2
Sample Output
10
坐标范围为–108到108之间的整数,我们要用到离散化
思路:
用两个数组把坐标记录下来,排序
之后用两个循环枚举顶点,里面从 1 − N 1-N 1−N判断是否在范围内,在就记录
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
long long x[1010],y[1010],x1[1010],yyy[1010],xx[1010],yy[1010],n;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d%d%d",&x[i],&y[i],&x1[i],&yyy[i]);
xx[i*2-1]=x[i];
xx[i*2]=x1[i];
yy[i*2-1]=y[i];
yy[i*2]=yyy[i];
}
sort(xx+1,xx+1+n*2);
sort(yy+1,yy+1+n*2);
long long ans=0;
for(int i=1;i<=n*2-1;i++){
for(int j=1;j<=n*2-1;j++){
long long s=(yy[j+1]-yy[j])*(xx[i+1]-xx[i]);
for(int k=1;k<=n;k++){
if(xx[i]>=x[k]&&xx[i+1]<=x1[k]&&yy[j]>=y[k]&&yy[j+1]<=yyy[k]){
ans+=s;
break;
}
}
}
}
printf("%lld",ans);
return 0;
}