更好的题目阅读
题目描述
在幻想乡,琪露诺是以笨蛋闻名的冰之妖精。
某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来。但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸。于是琪露诺决定到河岸去追青蛙。
小河可以看作一列格子依次编号为0到N,琪露诺只能从编号小的格子移动到编号大的格子。而且琪露诺按照一种特殊的方式进行移动,当她在格子i时,她只移动到区间[i+l,i+r]中的任意一格。你问为什么她这么移动,这还不简单,因为她是笨蛋啊。
每一个格子都有一个冰冻指数A[i],编号为0的格子冰冻指数为0。当琪露诺停留在那一格时就可以得到那一格的冰冻指数A[i]。琪露诺希望能够在到达对岸时,获取最大的冰冻指数,这样她才能狠狠地教训那只青蛙。
但是由于她实在是太笨了,所以她决定拜托你帮它决定怎样前进。
开始时,琪露诺在编号0的格子上,只要她下一步的位置编号大于N就算到达对岸。
输入格式
第1行:3个正整数N, L, R
第2行:N+1个整数,第i个数表示编号为i-1的格子的冰冻指数A[i-1]
输出格式
一个整数,表示最大冰冻指数。保证不超过2^31-1
输入输出样例
5 2 3
0 12 3 11 7 -2
11
说明/提示
对于60%的数据:N <= 10,000
对于100%的数据:N <= 200,000
对于所有数据 -1,000 <= A[i] <= 1,000且1 <= L <= R <= N
题目大意:
让你从 0 0 0走到 n n n,每次只能跳 l − r l-r l−r步,让你求最大冰冻指数
思路:
这显然可以用单调队列来做,我们首先推出动态转移方程:
f[i]=max(f[j])+a[i] \Large\texttt{f[i]=max(f[j])+a[i]} f[i]=max(f[j])+a[i]
再用单调队列维护递减就行了
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
int m, n, l, r, a[1001000], q[1001000], f[1001000];
int head=1, tail=0;
int main()
{
scanf("%d%d%d", &n, &l, &r);
for(int i=0; i<=n; i++)
{
scanf("%d", &a[i]);
}
memset(f, 0xcf, sizeof(f));
m=f[0];
f[0]=0;
for(int i=1; i<=n; i++)
{
if(i>=l)
{
while(head<=tail&&f[i-l]>=f[q[tail]])tail--;
q[++tail]=i-l;
}
while(head<=tail&&q[head]<i-r)head++;
if(head<=tail)f[i]=f[q[head]]+a[i];
}
for(int i=n-r+1; i<=n; i++)
m=max(f[i], m);
printf("%d", m);
return 0;
}