Description
张三是某工程公司的项目工程师。一天公司接下一项大型工程,该公司在大型工程的施工前,先要把整个工程划分为若干个子工程,并把这些子工程编号为1、2、…、N;这样划分之后,子工程之间就会有一些依赖关系,即一些子工程必须在某些子工程完成之后才能施工,公司需要工程师张三计算整个工程最少的完成时间。
对于上面问题,可以假设:
1、根据预算,每一个子工程都有一个完成时间。
2、子工程之间的依赖关系是:部分子工程必须在一些子工程完成之后才开工。
3、只要满足子工程间的依赖关系,在任何时刻可以有任何多个子工程同时在施工,也即同时施工的子工程个数不受限制。
例如:有五个子工程的工程规划表:
现在对于给定的子工程规划情况,及每个子工程完成所需的时间,如果子工程划分合理则求出完成整个工程最少要用的时间,如果子工程划分不合理,则输出-1。
Input
第1行为正整数N,表示子工程的个数(N<=200)
第2行为N个正整数,分别代表子工程1、2、…、N的完成时间。
第3行到N+2行,每行有N-1个0或1,其中的第K+2行的这些0或1,分别表示“子工程K”与子工程1、2、…、K-1、K+1、…、N的依赖关系(K=1、2、…、N)。每行数据之间均用空格分开。
Output
如果子工程划分合理则输出完成整个工程最少要用的时间,如果子工程划分不合理,则输出-1。
Sample Input
project.in
5
5 4 12 7 2
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 0
1 1 1 1.
project.in
5
5 4 12 7 2
0 1 0 0
0 0 0 0
0 0 1 0
1 1 0 0
1 1 1 1
Sample Output
project.out
14
project.out
-1
思路:
拓扑排序+DP
首先做一遍拓扑排序,每当有一个点入度为0时,我们就从它的儿子中选一个最大的时间作为完成这个工程之前所需的时间。最后统计一下就行。
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
using namespace std;
int n, tot;
int a[1000], head[1000], d[1000], f[1000100], v[1000], dp[1000];
struct node
{
int to, next;
}b[100010];
void VL_ljb(int x, int y)
{
b[++tot]=(node){y, head[x]};
head[x]=tot;
}
void VL_topu()
{
int hd=0, tl=0;
for(int i=1; i<=n; i++)
if(d[i]==0)
tl++, f[tl]=i, v[i]=1, dp[i]=a[i];
while(hd<tl)
{
hd++;
int x=f[hd];
for(int i=head[x]; i; i=b[i].next)
{
int y=b[i].to;
if(v[y]==0)
{
dp[y]=max(dp[y], dp[x]);
d[y]--;
if(d[y]==0)
{
dp[y]+=a[y];
v[y]=1;
tl++;
f[tl]=y;
}
}
}
}
}
int main(){
scanf("%d", &n);
for(int i=1; i<=n; i++) scanf("%d", &a[i]);
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
{
if(i==j)
continue;
int k;
scanf("%d", &k);
if(k==1)
VL_ljb(j, i), d[i]++;
}
VL_topu();
int ans=0;
for(int i=1; i<=n; i++)
if(d[i]!=0)
{printf("-1"); return 0;}
else
ans=max(ans, dp[i]);
printf("%d", ans);
return 0;
}