文章目录
质数:
质数拥有原子性,定义 π ( x ) π(x) π(x)为不大于 x x x的质数个数,则有 π ( x ) = O ( x L n x ) π(x)=O(\frac{x}{Ln x}) π(x)=O(Lnxx)
第 n n n个质数约等于 n L n ( n 2 ) \frac{n}{Ln(n^2)} Ln(n2)n
N = P 1 C 1 × P 2 C 2 × P 3 C 3 × … … × P m C m N={P_1}^{C_1}\times {P_2}^{C_2}\times{P_3}^{C_3}\times……\times{P_m}^{C_m} N=P1C1×P2C2×P3C3×……×PmCm
n n n只有一个质因子大于 n \sqrt{n} n。
证:
设 a > n a>\sqrt{n} a>n, b > n b>\sqrt{n} b>n,那么 a b > n ab>n ab>n,所以不满足
欧拉筛:
让每个数都只被筛一次
code:
(待补……)
整除:
a a a能被 d d d整除,记作 d ∣ a d | a d∣a(a>=d)
几条性质:
d ∣ a − > d ∣ k a d|a~~->d|ka d∣a −>d∣ka
a ∣ d 且 d ∣ a − > a = d a|d~且~d|a~~->a=d a∣d 且 d∣a −>a=d
c ∣ d 且 d ∣ a − > c ∣ a c|d~且~d|a~~->c|a c∣d 且 d∣a −>c∣a
c ∣ a 且 d ∣ b − > c d ∣ a b c|a~且~d|b~~->cd|ab c∣a 且 d∣b −>cd∣ab
c ∣ a 且 c ∣ b − > c ∣ ( m a + n b ) c|a~且~c|b~~->c|(ma+nb) c∣a 且 c∣b −>c∣(ma+nb)