题目描述
又到了诺德县的百姓孝敬夹克大老爷的日子,带着数量不等的铜板的村民准时聚集到了村口。
夹克老爷是一位很"善良"的老爷,为了体现他的仁慈,有一套特别的收钱的技巧。
1、让所有的村民排成一队,然后首尾相接排成一个圈。
2、选择一位村民收下他的铜钱,然后放过他左右两边的村民。
3、让上述三位村民离开队伍,并让左右两边的其他村民合拢起来继续围成一个圈。
4、重复执行2、3直到村民全部离开。
夹克老爷的家丁早早的组织村民排成一队并清点了村民人数和他们手里的铜钱数量。
作为夹克老爷的首席师爷,你要负责按照夹克老爷的收钱技巧完成纳贡的任务。
聪明的你当然知道夹克老爷并不像他表现出来的那样仁慈,能否收到最多的钱财决定了你是否能够继续坐稳首席师爷的位置。
今年村民的人数是N,恰巧是3的倍数。
思路:
我们发现,如果当前这个不取,就必须要取旁边两个
于是我们可以反悔贪心,只需要在取了当前i后,往队列里丢一个v[i-1]+v[i+1]-v[i]就行了
c o d e code code
#include<iostream>
#include<cstdio>
#include<queue>
#define ll long long
using namespace std;
const ll MAXN = 1e5 + 10;
ll n;
ll ans;
ll a[MAXN], nxt[MAXN], lst[MAXN];
priority_queue<pair<ll, ll> > q;
bool v[MAXN];
void del(ll x) {
nxt[lst[x]] = nxt[x];
lst[nxt[x]] = lst[x];
v[x] = 1;
}
int main() {
scanf("%lld", &n);
for(ll i = 1; i <= n; i ++) {
scanf("%lld", &a[i]);
q.push(make_pair(a[i], i));
nxt[i] = i + 1, lst[i] = i - 1;
}
lst[1] = n, nxt[n] = 1;
for(ll i = 1; i <= n / 3; i ++) {
pair<ll, ll> x;
while(1) {
x = q.top();
q.pop();
if(!v[x.second]) break;
}
ans += x.first;
ll l = lst[x.second], r = nxt[x.second];
a[x.second] = a[l] + a[r] - x.first;
del(l), del(r);
q.push(make_pair(a[l] + a[r] - x.first, x.second));
}
printf("%lld", ans);
return 0;
}