天池离线赛 - 移动推荐算法(三):特征构建

笔者是一个痴迷于挖掘数据中的价值的学习人,希望在平日的工作学习中,挖掘数据的价值,找寻数据的秘密,笔者认为,数据的价值不仅仅只体现在企业中,个人也可以体会到数据的魅力,用技术力量探索行为密码,让大数据助跑每一个人,欢迎直筒们关注我的公众号,大家一起讨论数据中的那些有趣的事情。

我的公众号为:livandata

本文为转载文章,来源为: https://blog.csdn.net/Snoopy_Yuan/article/details/75105724

一直在探索数据挖掘、数据建模的案例,百度搜到这篇文章,收获颇丰,转载以作记录。

移动推荐算法是阿里天池赛2015年赛题之一,题目以移动电商平台的真实用户-商品行为数据为基础来构建商品推荐模型。该题现已成为新人入门的经典演练对象,博主也希望基于该题场景,加深对机器学习相关知识的理解,积累实践经验。关于题目回顾与数据初探,可参考:天池离线赛 - 移动推荐算法(一):题目与数据解析,本文讨论如何进行特征构建,为之后基于模型的方法实现提供支持。

特征工程回顾

特征工程是机器学习方法在工业界得到有效应用的基础。业界普遍的认为:数据和特征决定了学习的上限,而模型和算法只是在逼近这个上限。所以,做好特征工程,是高效实现机器学习和数据挖掘任务的基础。关于特征工程的详细内容,可参考:特征工程到底是什么? - 知乎

特这构建与选取是特征工程的重要内容,包括:

  • 结合业务对象和数据可用性确定所需特征(包括特征的定义、数值特性、特征组合衍生…);
  • 基于原始数据构建特征数据并作基本预处理(SQL、数据清洗…);
  • 针对不同模型进行特征预处理,包括采样、单个特征预处理(归一化、离散化、缺值处理…)、多个特征的处理(PCA、LDA、Clustering、卡方检验、相关系数、正则化…);
  • 在模型训练中分析选取特征(有效性、重要性);
  • 。。。

特征构建

预研思路

首先给出特征构建时的一些思路:

  1. 由于用户行为对购买的影响随时间减弱,根据分析,用户在一周之前的行为对考察日是否购买的影响已经很小,故而只考虑距考察日一周以内的特征数据。

  2. 由于数据来源于垂直电商,其特点是线上购买线下消费,猜测其购买行为具有一定的周期性,进一步猜测行为周期为一个星期。待预测目标考察日为 12.19 ,是星期五,所以分割出11.18~12.18数据中的四段以星期五为考察日,一周为考察期的数据,一共有4组,其中一组涉及双十二异常期,故而省区,还剩下三组数据如下:

    part 1 - train: 11.22~11.27 -> 11.28;
    part 2 - train: 11.29~12.04 -> 12.05;
    part 3 - pred:  12.13~12.18 (-> 12.19);
    

    其中 part 1 和 part 2 可作为模型训练和验证数据集,part 3 为测试数据集;

  3. 针对当前业务背景,考虑从user、item、item_category三大基本维度及其组合入手进行特征构建,简称U、I、C。

  4. 由于问题已被明确为 U-I 是否发生购买行为(标记label取{0,1])的分类问题,最终的特征数据均要合并到生成以 U-I 为index(key)的样本集上来。进一步地,如要考虑所有可能的 U-I ,必将面临组合爆炸的问题,所以这里只关注在距考察日一周以内出现过的 U-I 。

特征构建

这里将所需构建的特征分为六大类:U、I、C、UI、UC、IC,对每类分别结合行为次数、时间、排序等视角设计特征。考虑到样本规模,特征数量不宜太少,这里我们设计了约100个特征来进行第一季的数据任务,具体的特征选择及定义见下表:

特征名称所属类别特征含义特征作用特征数量
u_b_count_in_n(n=1/3/6)U用户在考察日前n天的行为总数计数反映了user_id的活跃度(不同时间粒度:最近1天/3天/6天)3
u_bi_count_in_n(i=1/2/3/4,n=1/3/6)U用户在考察日前n天的各项行为计数反映了user_id的活跃度(不同时间粒度),反映了user_id的各项操作的活跃度,折射出user_id的购买习惯12
u_b4_rateU用户的点击购买转化率反映了用户的购买决策操作习惯1
u_b4_diff_hoursU用户的点击购买平均时差反映了用户的购买决策时间习惯1
i_u_count_in_nI商品在考察日前n天的用户总数计数反映了item_id的热度(用户覆盖性)3
i_b_count_in_nI商品在考察日前n天的行为总数计数反映了item_id的热度(用户停留性)3
i_bi_count_in_nI商品在考察日前n天的各项行为计数反映了item_id的热度(用户操作吸引),折射出item_id产生的购买习惯特点12
i_b4_rateI商品的点击购买转化率反映了商品的购买决策操作特点1
i_b4_diff_hoursI商品的点击购买平均时差反映了商品的购买决策时间特点1
c_u_count_in_nC类别在考察日前n天的用户总数计数反映了item_category的热度(用户覆盖性)3
c_b_count_in_nC类别在考察日前n天的行为总数计数反映了item_category的热度(用户停留性)3
c_bi_count_in_nC类别在考察日前n天的各项行为计数反映了item_category的热度(用户操作吸引),包含着item_category产生的购买习惯特点12
c_b4_rateC类别的点击购买转化率反映了item_category的购买决策操作特点1
c_b4_diff_hoursC类别的点击购买平均时差反映了item_category的购买决策时间特点1
ic_u_rank_in_cIC商品在所属类别中的用户人数排序反映了item_id在item_category中的热度排名(用户覆盖性)1
ic_b_rank_in_cIC商品在所属类别中的行为总数排序反映了item_id在item_category中的热度排名(用户停留性)1
ic_b4_rank_in_cIC商品在所属类别中的销量排序反映了item_id在item_category中的热度排名(销量)1
ui_b_count_in_nUI用户-商品对在考察日前n天的行为总数计数反映了user_id - item_id的活跃度3
ui_bi_count_in_nUI用户-商品对在考察日前n天的各项行为计数反映了user_id - item_id的活跃度,反映了user_id - item_id的各项操作的活跃度,对应着user_id - item_id的购买习惯12
ui_bi_last_hoursUI用户-商品对各项行为上一次发生距考察日的时差反映了user_id - item_id的活跃时间特征4
ui_b_count_rank_in_n_in_uUI用户商品对的行为在用户所有商品中的排序反映了user_id对item_id的行为偏好3
ui_b_count_rank_in_n_in_ucUI-UC用户-商品对的行为在用户-类别对中的排序反映了user_id对item_category中的各个item_id的行为偏好3
uc_b_count_in_nUC用户-类别对在考察日前n天的行为总数计数反映了user_id - item_category的活跃度3
uc_bi_count_in_nUC用户-类别对在考察日前n天的各项行为计数反映了user_id -item_category的活跃度,反映了user_id -item_category的各项操作的活跃度,对应着user_id -item_category的购买习惯12
uc_bi_last_hoursUC用户-类别对各项行为上一次发生距考察日的时差反映了user_id -item_category的活跃时间特征4
uc_b_count_rank_in_n_in_uUC用户-类别对的行为在用户所有商品中的排序反映了user_id对item_category的行为偏好3

通过sql或python-pandas可以简洁的完成这些特征的提取。

参考程序:python-pandas特征提取

这些特征数值尺度不一,所以在使用尺度敏感模型前需要进行归一化处理;有些特征是离散型(如排序特征),有的特征存在缺值(如时间差特征),这些都要根据具体的模型来进行预处理。

样本格式

在进行了特征构建之后,我们通过合并各大类特征数据(U、I、C、UI、UC、IC)得出训练和预测所需的数据,数据样本格式如下:

#索引特征标签
一行样本数据user_id, item_id约100个特征数据分类结果(0-未购买,1-购买)

在得出样本集之后,就可以进行模型的训练和预测了。

(p.s.生成的数据量规模达到10G级别,考虑到单机计算存储资源受限,在示例程序大量使用了分块操作,另外也可考虑基于HDFS+MR来实现)。

大学生参加学科竞有着诸多好处,不仅有助于个人综合素质的提升,还能为未来职业发展奠定良好基础。以下是一些分析: 首先,学科竞是提高专业知识和技能水平的有效途径。通过参与竞,学生不仅能够深入学习相关专业知识,还能够接触到最新的科研成果和技术发展趋势。这有助于拓展学生的学科视野,使其对专业领域有更深刻的理解。在竞过程中,学生通常需要解决实际问题,这锻炼了他们独立思考和解决问题的能力。 其次,学科竞培养了学生的团队合作精神。许多竞项目需要团队协作来完成,这促使学生学会有效地与他人合作、协调分工。在团队合作中,学生们能够学到如何有效沟通、共同制定目标和分工合作,这对于日后进入职场具有重要意义。 此外,学科竞是提高学生综合能力的一种途径。竞项目通常会涉及到理论知识、实际操作和创新思维等多个方面,要求参者具备全面的素质。在竞过程中,学生不仅需要展现自己的专业知识,还需要具备创新意识和解决问题的能力。这种全面的综合能力培养对于未来从事各类职业都具有积极作用。 此外,学科竞可以为学生提供展示自我、树立信心的机会。通过比的舞台,学生有机会展现自己在专业领域的优势,得到他人的认可和赞誉。这对于培养学生的自信心和自我价值感非常重要,有助于他们更加积极主动地投入学习和未来的职业生涯。 最后,学科竞对于个人职业发展具有积极的助推作用。在竞中脱颖而出的学生通常能够引起企业、研究机构等用人单位的关注。获得竞奖项不仅可以作为个人履历的亮点,还可以为进入理想的工作岗位提供有力的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值