前言:移动推荐算法是阿里天池赛2015年赛题之一,题目以移动电商平台的真实用户-商品行为数据为基础来构建商品推荐模型。该题现已成为新人入门的经典演练对象,博主也希望基于该题场景,加深对机器学习相关知识的理解,积累实践经验。
关于题目回顾与数据初探,可参考:天池离线赛 - 移动推荐算法(一):题目与数据解析,本文讨论如何运用一个简单的规则来进行预测,主要目的是感受一下天池赛答题评分的过程。
规则提出
根据生活常识,我们很容易想到加购物车的行为behavior_type = 3
与最终的购买行为behavior_type = 4
强关联,于是我们提出这样一条规则:
在 T 时间内加购物车的用户最终会选择购买、
于是我们的任务变成了确定这个最优参数 T。
数据构建与宏观分析
为了进行分析,我们基于原始数据集构建一个新的数据集:
D_time = {<user_id, item_id, tim