天池离线赛 - 移动推荐算法(二):基于简单规则的预测

本文探讨阿里天池赛2015年的移动推荐算法问题,通过构建规则预测用户购买行为。规则提出以加购物车行为与购买行为的关联,构建D_time数据集,分析时间差,确定最优参数T。最终,基于规则的预测方法在比赛中取得了较好的效果。
摘要由CSDN通过智能技术生成

前言移动推荐算法是阿里天池赛2015年赛题之一,题目以移动电商平台的真实用户-商品行为数据为基础来构建商品推荐模型。该题现已成为新人入门的经典演练对象,博主也希望基于该题场景,加深对机器学习相关知识的理解,积累实践经验。

关于题目回顾与数据初探,可参考:天池离线赛 - 移动推荐算法(一):题目与数据解析,本文讨论如何运用一个简单的规则来进行预测,主要目的是感受一下天池赛答题评分的过程。

规则提出

根据生活常识,我们很容易想到加购物车的行为behavior_type = 3与最终的购买行为behavior_type = 4强关联,于是我们提出这样一条规则:

在 T 时间内加购物车的用户最终会选择购买、

于是我们的任务变成了确定这个最优参数 T。

数据构建与宏观分析

为了进行分析,我们基于原始数据集构建一个新的数据集:

D_time = {<user_id, item_id, tim
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值