天池离线赛 - 移动推荐算法(二):基于简单规则的预测

本文探讨阿里天池赛2015年的移动推荐算法问题,通过构建规则预测用户购买行为。规则提出以加购物车行为与购买行为的关联,构建D_time数据集,分析时间差,确定最优参数T。最终,基于规则的预测方法在比赛中取得了较好的效果。
摘要由CSDN通过智能技术生成

前言移动推荐算法是阿里天池赛2015年赛题之一,题目以移动电商平台的真实用户-商品行为数据为基础来构建商品推荐模型。该题现已成为新人入门的经典演练对象,博主也希望基于该题场景,加深对机器学习相关知识的理解,积累实践经验。

关于题目回顾与数据初探,可参考:天池离线赛 - 移动推荐算法(一):题目与数据解析,本文讨论如何运用一个简单的规则来进行预测,主要目的是感受一下天池赛答题评分的过程。

规则提出

根据生活常识,我们很容易想到加购物车的行为behavior_type = 3与最终的购买行为behavior_type = 4强关联,于是我们提出这样一条规则:

在 T 时间内加购物车的用户最终会选择购买、

于是我们的任务变成了确定这个最优参数 T。

数据构建与宏观分析

为了进行分析,我们基于原始数据集构建一个新的数据集:

D_time = {<user_id, item_id, tim
大学生参加学科竞有着诸多好处,不仅有助于个人综合素质的提升,还能为未来职业发展奠定良好基础。以下是一些分析: 首先,学科竞是提高专业知识和技能水平的有效途径。通过参与竞,学生不仅能够深入学习相关专业知识,还能够接触到最新的科研成果和技术发展趋势。这有助于拓展学生的学科视野,使其对专业领域有更深刻的理解。在竞过程中,学生通常需要解决实际问题,这锻炼了他们独立思考和解决问题的能力。 其次,学科竞培养了学生的团队合作精神。许多竞项目需要团队协作来完成,这促使学生学会有效地与他人合作、协调分工。在团队合作中,学生们能够学到如何有效沟通、共同制定目标和分工合作,这对于日后进入职场具有重要意义。 此外,学科竞是提高学生综合能力的一种途径。竞项目通常会涉及到理论知识、实际操作和创新思维等多个方面,要求参者具备全面的素质。在竞过程中,学生不仅需要展现自己的专业知识,还需要具备创新意识和解决问题的能力。这种全面的综合能力培养对于未来从事各类职业都具有积极作用。 此外,学科竞可以为学生提供展示自我、树立信心的机会。通过比的舞台,学生有机会展现自己在专业领域的优势,得到他人的认可和赞誉。这对于培养学生的自信心和自我价值感非常重要,有助于他们更加积极主动地投入学习和未来的职业生涯。 最后,学科竞对于个人职业发展具有积极的助推作用。在竞中脱颖而出的学生通常能够引起企业、研究机构等用人单位的关注。获得竞奖项不仅可以作为个人履历的亮点,还可以为进入理想的工作岗位提供有力的支持。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值