题目:
今盒子里有n个小球,A、B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断。
我们约定:
每个人从盒子中取出的球的数目必须是:1,3,7或者8个。
轮到某一方取球时不能弃权!
A先取球,然后双方交替取球,直到取完。
被迫拿到最后一个球的一方为负方(输方)
请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?
程序运行时,从标准输入获得数据,其格式如下:
先是一个整数n(n<100),表示接下来有n个整数。然后是n个整数,每个占一行(整数<10000),表示初始球数。
程序则输出n行,表示A的输赢情况(输为0,赢为1)。
例如,用户输入:
4
1
2
10
18
则程序应该输出:
0
1
1
0
注意:
请仔细调试!您的程序只有能运行出正确结果的时候才有机会得分!
在评卷时使用的输入数据与试卷中给出的实例数据可能是不同的。
请把所有函数写在同一个文件中,调试好后,存入与【考生文件夹】下对应题号的“解答.txt”中即可。
相关的工程文件不要拷入。
源代码中不能能使用诸如绘图、Win32API、中断调用、硬件操作或与操作系统相关的API。
允许使用STL类库,但不能使用MFC或ATL等非ANSI c++标准的类库。例如,不能使用CString类型(属于MFC类库)。
思路:
看到这个问题很容易让人想到人们所熟知的抢30的游戏,不过和抢30游戏不同的是题目所给的数字不连续而且有些情况数字偏大,不利于计算。刚开始我以为用递归就可以解决,不过到后来不好控制而且我的代码功底不行就放弃了。
我们先来分析下前几个数字:
数字 1 :A是必输的。数字 2 :A是必赢的。数字 3 :A是必输的。数字 4 :
A 1 3 B 3 1 还有一种分解情况是全为1,这是不符合题目所要求的“双方都不判断失误”这一情况。
依次类推 6 不全为1的情况可以分成2块或4块为偶数块——A必胜,7可以分成5块或3块——A必败,8时A必胜。。。。。。
我们分析到15就可以了,可以发现次数相差两次的情况,只要不出错,结果就没有变化。
这里要说一下为什么要到15结束。
当 [1, 3 , 7 ,8 ]这4个数两两相加时,可以得到[2,4,6,8,9,10,11,14,15]这个数组,可以推断出2~15这些数都可以经过偶数次累加得到。
所以结果会以15为周期进行循环。所以我们列出前15,或者通过表达式就能轻易得到结果。
同时如果通过推导也可以得到,不过较为难理解。
代码:
周期方法:
#include <stdio.h> int main(){ int n,i = 0; int a[100]; scanf("%d",&n); for(int i = 0; i < n; i++) { scanf("%d", a + i); //相当于数组的指针 } for(int i = 0; i < n; i++) { a[i] %= 15; printf("%d\n",(a[i] == 1 || a[i] == 3 || a[i] == 5 || a[i] == 7) ? 0:1); } }
推导方法:
#include <stdio.h> void main() { int a[100], n, max; int b[] = {1, 3, 7, 8}; _Bool flag[10001] = {0}; //C99标准中布尔类型的声明方式 int i, j; max = 0 ; scanf("%d", &n); for(i = 0; i < n; i++) { scanf("%d", a + i); //相当于数组的指针 if(a[i] > max) max = a[i] ; } for(i = 2; i <= max; i++){ for(j = 0 ; j < 4 && b[j] < i ; j++ ) { if(flag[i - b[j]] == 0) { flag[i] = 1 ; break; } } } for(i = 0; i < n; i++) printf("%d\n", flag[a[i]]); }
结果:
0
1
1
0