带负权图的单源最短路径算法:Bellman-Ford算法

算法简介   

       前面介绍过图的单源最短路径算法Dijkstra算法,然而Dijkstra算法无法判断含负权边的图的最短路。如果遇到负权,在没有负权回路存在时(负权回路的含义是,回路的权值和为负。)即便有负权的边,也可以采用Bellman-Ford算法正确求出最短路径。
        Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数 w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。

        Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数 w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。

适用条件&范围

  • 单源最短路径
  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Bellman-Ford算法是一种用于解决单源最短路径问题的算法。它可以处理负权边的,并且可以检测到负权环。下面我将给出一个具体的案例来说明Bellman-Ford算法的实现过程。 假设有一个负权边的有向,如下所示: ![Bellman-Ford算法具体案例及算法](https://img-blog.csdnimg.cn/20211201171019322.png) 我们要求从源点S到其它各个顶点的最短路径。首先,我们需要初始化距离数组dist,将源点S的距离设为,其它顶点的距离设为无穷大。同时,我们需要初始化前驱数组prev,将源点S的前驱设为自身,其它顶点的前驱设为null。 接下来,我们需要进行n-1次松弛操作,其中n为中顶点的个数。每次松弛操作都会遍历中的所有边,对每条边进行松弛操作。松弛操作的具体过程如下: 对于一条边(u, v),如果dist[u]+w(u, v)<dist[v],则更新dist[v]为dist[u]+w(u, v),同时更新prev[v]为u。 其中,w(u, v)表示边(u, v)的权值。 第一次松弛操作后,距离数组和前驱数组的值如下所示: ![Bellman-Ford算法具体案例及算法](https://img-blog.csdnimg.cn/20211201171019321.png) 第二次松弛操作后,距离数组和前驱数组的值如下所示: ![Bellman-Ford算法具体案例及算法](https://img-blog.csdnimg.cn/20211201171019320.png) 第三次松弛操作后,距离数组和前驱数组的值如下所示: ![Bellman-Ford算法具体案例及算法](https://img-blog.csdnimg.cn/20211201171019319.png) 第四次松弛操作后,距离数组和前驱数组的值如下所示: ![Bellman-Ford算法具体案例及算法](https://img-blog.csdnimg.cn/20211201171019318.png) 第五次松弛操作后,距离数组和前驱数组的值如下所示: ![Bellman-Ford算法具体案例及算法](https://img-blog.csdnimg.cn/20211201171019317.png) 最终,我们得到了从源点S到其它各个顶点的最短路径。其中,如果距离数组中存在负数,则说明中存在负权环,Bellman-Ford算法无法处理这种情况。 以上就是Bellman-Ford算法的具体案例及算法。 ### 回答2: Bellman-Ford算法是解决单源最短路径问题的一种算法。它可以用于有向负权边的算法具体案例如下:假设有一个有向,其中包含5个节点(A、B、C、D、E)和6条边,边的权重如下:AB(6),AC(3),BC(2),BD(5),CD(-2),DE(1)。 Bellman-Ford算法如下: 1. 初始化距离数组dist[],将起点到所有其他点的距离初始化为无穷大,除了起点本身的距离初始化为0。 2. 对于每个节点进行n-1次迭代,其中n是节点的数量。(本例中进行4次迭代) 3. 在每次迭代中,遍历所有的边,如果从当前节点u到边的终点v的距离加上边的权重w小于dist[v],则更新dist[v]为新的距离值。 4. 完成n-1次迭代后,得出的dist[]数组中存储的就是起点到其他节点的最短路径距离。 在本例中,按照上述算法进行4次迭代后,得到的最终dist[]数组为[0, 3, 5, 7, 8],表示起点A到其他节点的最短路径距离分别为:A到B为0,A到C为3,A到D为5,A到E为7。 Bellman-Ford算法的时间复杂度为O(V * E),其中V是节点数量,E是边数量。这是由于该算法需要遍历所有的边,并进行n-1次迭代。当出现负权环的情况时,算法无法得出最短路径结果。但可以通过检测负权环的存在来判断是否存在该问题。 ### 回答3: Bellman-Ford算法是一种用于计算负权边的单源最短路径算法。它可以解决一般的有向负权边的最短路径问题。算法的时间复杂度为O(VE),其中V是中的顶点数,E是中的边数。 下面以一个具体案例来说明Bellman-Ford算法的执行过程: 假设有一个有向,其中包含5个顶点和6条边。我们要求从顶点A到其他所有顶点的最短路径。 顶点 边 权重 A AB 1 A AC -3 B CD 2 C BD -2 D AE 3 E BC 2 首先,我们初始化源顶点A到其他所有顶点的距离为无穷大,除了A自身到A的距离为0。同时,我们初始化一个辅助数组distance用于存储当前已知的最短距离。 然后,我们开始执行Bellman-Ford算法的主循环。在每一轮循环中,我们遍历所有边,计算通过当前边能够获得的更短路径。如果发现了一条更短的路径,则更新距离数组distance。一共需要执行V-1轮循环,其中V是中的顶点数。 第一轮循环: 假设distance[A] = 0,distance[B] = ∞,distance[C] = ∞,distance[D] = ∞,distance[E] = ∞。 遍历边AB,发现distance[B] > distance[A] + 1,更新distance[B] = distance[A] + 1 = 1。 遍历边AC,发现distance[C] > distance[A] - 3,更新distance[C] = distance[A] - 3 = -3。 其他边没有更新。 第二轮循环: 假设distance[A] = 0,distance[B] = 1,distance[C] = -3,distance[D] = ∞,distance[E] = ∞。 遍历边CD,发现distance[D] > distance[C] + 2,更新distance[D] = distance[C] + 2 = -1。 遍历边BD,发现distance[D] > distance[B] - 2,更新distance[D] = distance[B] - 2 = -1。 其他边没有更新。 第三轮循环: 假设distance[A] = 0,distance[B] = 1,distance[C] = -3,distance[D] = -1,distance[E] = ∞。 遍历边AE,发现distance[E] > distance[A] + 3,更新distance[E] = distance[A] + 3 = 3。 其他边没有更新。 第四轮循环: 假设distance[A] = 0,distance[B] = 1,distance[C] = -3,distance[D] = -1,distance[E] = 3。 遍历边BC,发现distance[C] > distance[B] + 2,更新distance[C] = distance[B] + 2 = 3。 其他边没有更新。 最后,经过V-1=4轮循环,我们得到了从顶点A到其他所有顶点的最短路径。结果为distance[A] = 0,distance[B] = 1,distance[C] = 3,distance[D] = -1,distance[E] = 3。 Bellman-Ford算法的核心思想是通过松弛操作不断更新当前已知的最短距离,直到达到最优解。当算法结束后,如果存在从源点可达的顶点无法通过松弛操作更新,则说明中存在负权回路。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值