砝码分盐问题——从数学和计算机的角度分析(5)

本文详细探讨了使用砝码分盐问题的解决方案,从数学角度和编程实现两个方面进行分析。作者介绍了如何通过改进的搜索方法减少无效节点的创建,实现了在三次称量中找到正确解的算法,并提供了相关代码实现。文章还讨论了方法的效率和空间优化,以及后续可能的改进方向。
摘要由CSDN通过智能技术生成

本博客(http://blog.csdn.net/livelylittlefish )贴出作者(阿波)相关研究、学习内容所做的笔记,欢迎广大朋友指正!

Content

0. 问题

1. 一些方法

2. 从数学的角度分析

3. 能否编程计算?

4. 一个改进的方法

5. 再改进的方法

5.1基本思想

5.2 2次称量过程

5.3 3次称量过程

5.4如何创建节点?

5.5输出结果

5.6讨论

6. 能否直接计算求出所有正确解?

7. 一个更为简单的方法

8. 所有代码的自动编译、运行

9. 问题扩展

10. 体会

11. 总结

Reference

附录 1 :数学分解的代码weight1.c

附录 2 :数学分解程序weight1 的运行结果

附录 3 :树结构分解的代码weight2.c

附录 4 :再改进的方法的代码weight3.1.c/3.2.c/3.3.c

附录 5 :再改进的方法的代码weight3.1.c/3.2.c/3.3.c 的输出结果

附录 6 :直接计算正确分解的代码weight4.c

附录 7 :一个更简单的方法的代码weight5.1.c/5.2.c/5.3.c

                              

5. 再改进的方法

 

从上图中,删除那些有分解结果但结果并非所求的节点,包括中间节点和叶子节点,如下图所示。

 

 

那么,能否通过编程直接计算求得上图所有正确的解呢?

——一定可以。关键就看怎么编程实现目标了。

 

5.1 基本思想

 

4程序的基础上,继续修改代码,删除weight3()函数,直接在weight2()中对第2次称量并对第2次称量的结果进行再分解(即第3次称量),并对第3次分解结果进行判断,只有当该称量过程满足目标时,才建立节点,包括第2层和第3层的节点。这样,没有分解结果的节点(包括第2层和第3层的节点)就不会被建立,如上图,叶子节点全部是正确的分解结果。不仅让问题更直观,且节省了空间,虽然空间并不那么重要。

 

5.2 2次称量过程

 

如上所述,第2次称量过程中要对第2次称量分解的结果进行再分解(3次称量),并对第3次分解结果进行判断,这就是该方法的重点实现过程,如下。第1次称量过程的代码及具体的代码请参考附录4

00095: / ** the second division, according to x=x1+x2, y=y1+y2, x1<=x2, y1<=y2
00096:    but, x and y are saved in node1- >to_be_divided_[0] and node1- >to_be_divided_[1].
00097:    so, unify them to be as x.
00098: */
00099: void weight2()
00100: {
00101:    int div = 0, i = 0, k1 = 0, w = 0;
00102:    struct Division_Node *cur = &root;
00103:
00104:    int step = 2;
00105:    for (i = 0; i < cur->child_; i++) //for each node1 in step1
00106:    {
00107:       struct Division_Node *node1 = cur->next_[i]; //step 2 will use all nodes created in step 1
00108:
00109:       //to avoid repeatance
00110:       int to_be_divided = To_Be_Devided;
00111:       if (node1->heap_[node1->to_be_divided_[0]] == node1- >heap_[node1->to_be_divided_[1]])
00112:          to_be_divided-- ;
00113:
00114:       int child1 = 0;
00115:       for (div = 0; div < to_be_divided; div++)//step2, will divide x=heap_[0],y=heap_[1] of node1
00116:       {
00117:          int curpos1 = node1->to_be_divided_[div];
00118:          int x = node1->heap_[curpos1]; //the current heap to be divided
00119:
00120:          for (k1 = 0; k1 < Max_Num; k1++) //divide x=x1+x2, use x in order to be in a uniform
00121:          {
00122:             w = ws[k1];
00123:             int x1 = (x - w)/ 2;
00124:             int x2 = (x + w)/ 2;
00125:             if (x1 % 2 != 0) //no need to judge x2
00126:                continue;
00127:
00128:             struct Division_Node *node2 = NULL;
00129:             int child2 = 0;
00130:
00131:             /** a correct solution, and only in this case, create node2 and node3 */
00132:             child2 = weightx1(curpos1, step, x1, x2, child1, child2, node1, &node2);//divide x1
00133:             if (x2 != x1) //to avoid repeatance
00134:                child2 = weightx2(curpos1, step, x1, x2, child1, child2, node1, &node2);//divide x2
00135:
00136:             if (node2)
00137:             {
00138:                node2->child_ = child2;
00139:                child1++;
00140:             }
00141:          }
00142:       }
00143:       node1->child_ = child1;
00144:    }
00145: }

5.3 3次称量过程

 

该方法中,第3次称量过程在weightx1()weightx2()中完成,且是第2次过程中嵌套进行,即通过weight2()调用完成。由于weightx1()weightx2()思想相同,此处以weightx2()为例叙述,其他的代码可参考附录4

00173: int weightx2(int curpos1, int step, int x1, int x2, int child1, int child2, 
00174:    struct Division_Node* node1, struct Division_Node **node2)
00175: {
00176:    int k2 = 0, w = 0;
00177:    int curpos2 = step;
00178:
00179:    for (k2 = 0; k2 < Max_Num; k2++)
00180:    {
00181:       w = ws[k2];
00182:       int x21 = (x2 - w)/ 2; //divide x or y, use x in order to be in a uniform
00183:       int x22 = (x2 + w)/ 2;
00184:       if (x21 % 2 != 0)      //no need to judge x12
00185:          continue;
00186:
00187:       if (x21 + x1 == heap1 || x22 + x1 == heap1)
00188:       {
00189:          *node2 = create_node(node1, *node2, curpos1, curpos2, step, x1, x2, x21, x22,
00190:             child1, child2);
00191:          child2++;
00192:          break;
00193:       }
00194:    }
00195:
00196:    return child2;
00197: }

该分解过程如下。

(1) 1次称量:z=x+y, x<=y

(2) 2次称量:x=x1+x2, x1<=x2

(3) 3次称量:x2=x21+x22, x21<=x22

最后的分解结果为(x1, x21, x22, y),故需要判断x1+x21x1+x22是否为heap1=100,如代码所示。实际上,对第1次称量出的y的分解在weight2()115行的for循环中完成,即统一为以上过程。

 

5.4 如何创建节点?

 

如上所述,只有在满足目标时,才建立节点,包括第2层和第3层的节点,即代码中的node2node3。如下。

00199: struct Division_Node *create_node(struct Division_Node *node1, struct Division_Node *node2,
00200:    int curpos1, int curpos2, int step, int x1, int x2, int x11, int x12, int child1, int child2)
00201: {
00202:    if (node2 == NULL)  //此处放置重复创建node2(当node2有多个儿子节点时)
00203:    {
00204:       //new a node in step 2
00205:       node2 = (struct Division_Node*)malloc(sizeof(struct Division_Node));
00206:       memset(node2, 0, sizeof(struct Division_Node));
00207:       memcpy(node2->heap_, node1->heap_, (Max_Num - 1) * sizeof(int)); //copy from its parent
00208:       node2->parent_be_divided_ = curpos1;
00209:       node2->step_ = step;
00210:       node2->heap_[curpos1] = x1;
00211:       node2->heap_[step] = x2;
00212:       node2->to_be_divided_[0] = curpos1;
00213:       node2->to_be_divided_[1] = step;
00214:       node1->next_[child1] = node2; //link current node1 and node2
00215:    }
00216:
00217:    //new a node in step 3
00218:    struct Division_Node *node3 = (struct Division_Node*)malloc(sizeof(struct Division_Node));
00219:    memset(node3, 0, sizeof(struct Division_Node));
00220:    memcpy(node3->heap_, node2- >heap_, (Max_Num - 1) * sizeof(int)); //copy from its parent
00221:    node3->parent_be_divided_ = curpos2;
00222:    node3->step_ = step + 1;
00223:    node3->heap_[curpos2] = x11;
00224:    node3->heap_[step + 1] = x12;
00225:    node3->to_be_divided_[0] = curpos2; //in fact, this array in step3 needed for dump
00226:    node3->to_be_divided_[1] = step + 1;
00227:    node2->next_[child2] = node3; //link current node2 and node3
00228:
00229:    return node2;
00230: } ? end create_node 

5.5 输出结果

-------------------------------------
the results of all correct divisions:
-------------------------------------
280 = 140 + 140
140 = 70 + 70
70 = 30 + 40

280 = 138 + 142
138 = 62 + 76
62 = 24 + 38

280 = 138 + 142
138 = 62 + 76
76 = 38 + 38

280 = 138 + 142
142 = 66 + 76
66 = 24 + 42

280 = 138 + 142
142 = 62 + 80
80 = 38 + 42

这就是所有满足目标的正确称量过程,即上图中的所有叶子节点的值。该方法的3中写法可参考附录4,其输出结果可参考附录5

 

5.6 讨论

 

该方法如其基本思想,对第3次分解结果进行判断,只有当该称量过程满足目标时,才建立节点,包括第2层和第3层的节点,从而叶子节点全部是正确的分解结果,让问题更直观,且节省了大量空间,虽然空间并不那么重要。

 

附录4:再改进的方法的代码weight3.1.c/3.2.c/3.3.c

 

 

 

附录5:再改进的方法的代码weight3.1.c/3.2.c/3.3.c的输出结果

-------------------------------------
the results of all correct divisions:
-------------------------------------
280 = 140 + 140
140 = 70 + 70
70 = 30 + 40

280 = 138 + 142
138 = 62 + 76
62 = 24 + 38

280 = 138 + 142
138 = 62 + 76
76 = 38 + 38

280 = 138 + 142
142 = 66 + 76
66 = 24 + 42

280 = 138 + 142
142 = 62 + 80
80 = 38 + 42

上一节 下一节

 

, ,

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值