ZOJ 2725 SG函数 DP

给一个长度为6的有前导零的数字,每次可以使一位减少,最少减少1,最多减少到0,也可以在0右边的数字和0本身都删除,两人轮流操作,问先手是否必胜

一开始看错题,写了半天都不对,一种是SG函数的,发现SG函数vis数组范围是SG的选择,另一种是顺推的DP,DP要快很多

SG函数 1680ms

#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <string>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

typedef  long long LL;
const double PI = acos(-1.0);

template <class T> inline  T MAX(T a, T b){if (a > b) return a;return b;}
template <class T> inline  T MIN(T a, T b){if (a < b) return a;return b;}

const int N = 111;
const int M = 11111;
const LL MOD = 1000000007LL;
const int dir[4][2] = {1, 0, -1, 0, 0, -1, 0, 1};
const int INF = 0x3f3f3f3f;



int sg[10][10][10][10][10][10][10];

int cg(int l, int a[10])
{
    int b[10], i, j, k;
    int & ans = sg[l][a[0]][a[1]][a[2]][a[3]][a[4]][a[5]];
    if (l == 0)
    {
        ans = 0;
        return 0;
    }
    bool v[61];
    memset(v, false, sizeof(v));
    if (ans != -1) return ans;
    for (i = 0; i < l; ++i)
    {
        if (a[i] != 0)
        {
            for (j = 1; j <= a[i]; ++j)
            {
                a[i]-=j;
                k = cg(l, a);
                v[k] = 1;
                a[i]+=j;
            }
        }
        if (a[i] == 0)
        {
            for (j = i; j < l; ++j)
            {
                b[j] = a[j];
                a[j] = 0;
            }
            k = cg(i, a);
            v[k] = 1;
            for (j = i; j < l; ++j)
                a[j] = b[j];
        }
    }
    i = 0;
    while (v[i]) i++;
    ans = i;
//    printf("%d %d %d %d %d %d %d: %d\n", l, a[0], a[1], a[2], a[3], a[4],a[5], ans);
    return ans;
}



int main()
{
    char str[10];
    memset(sg, -1, sizeof(sg));
    while (scanf("%s", str) != EOF)
    {
        int l, num[6], i, j, k;
        l = strlen(str);

        memset(num, 0, sizeof(num));
        for (i = 0; i < l; ++i)
        {
            num[i] = str[i] - '0';
        }
        if (num[0] == 0) {printf("Yes\n"); continue;}
        if (cg(l, num) != 0)printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}


 

DP 30ms

#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <string>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

typedef  long long LL;
const double PI = acos(-1.0);

template <class T> inline  T MAX(T a, T b){if (a > b) return a;return b;}
template <class T> inline  T MIN(T a, T b){if (a < b) return a;return b;}

const int N = 111;
const int M = 11111;
const LL MOD = 1000000007LL;
const int dir[4][2] = {1, 0, -1, 0, 0, -1, 0, 1};
const int INF = 0x3f3f3f3f;


bool dp[1111111];

int callen(int x)
{
    int m = 0;
    while (x)
    {
        x /= 10;
        m++;
    }
    return m;
}



void solve(int x)
{
    int q, lim, m = x, l, bas = 1, i, j, k;
    l = callen(m);
    for (i = 0; i < l; ++i)
    {
        lim = (m / bas) % 10; q = m;
        for (j = 0; j < 9 - lim ; ++j)
        {
            q += bas;
            dp[q] = 1;
        }
        bas *= 10;
    }
    if (l < 6)
    {
        k = 6 - l; m = x;
        bas = 1;
        for (j = 0; j < k; ++j)
        {
            m *= 10;
            for (i = 0; i < bas; ++i)
                dp[m + i] = 1;
            bas *= 10;
        }
    }
}

void init()
{
    memset(dp, false, sizeof(dp));
    dp[0] = true;
    for (int i = 1; i <= 999999; ++i)
    {
        if (!dp[i]) solve(i);
    }
}




int main()
{
    char str[10];
    init();
    while (scanf("%s", str) != EOF)
    {
        int n, l;
        l = strlen(str);
        if (str[0] == '0')
        {
            printf("Yes\n");
            continue;
        }
        n = 0;
        for (int i = 0; i < l; ++i)
            n = n * 10 + str[i] - '0';
        if (dp[n]) printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}


 

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值