Rasa作为一个开源的智能应答机器人其模块非常成熟,同时Rasa-Pro虽然不开源,但是在本地安装后是可以直接进行前后端的代码阅读,并且也可以发布为自己的应答机器人。而Rasa-Pro在最新版本中引入了LLM模式,在它原来的自然语言实现的基础上更上一层楼。理解Rasa-Pro的源代码可以对我们AI相关技能的提高非常有用:
1、如何用现有的开源模块实现自己的自然语言理解模块,rasa-pro是一个国外的版本,虽然对于中文模块支持感觉不是特别好,但是其整个软件框架还是非常有借鉴意义
2、如何把LLM用在自然语言机器人模型上
后续通过扩展Rasa模块,把Rasa-Pro和FreeSwitch及淘宝/京东等电商平台的客服结合都是一个非常好的未来工具
1、安装基础rasa-pro 模块
在分析及详细了解rasa-pro模块之前,需要先安装rasa-pro, rasa-pro 本身就提供了一个基于github codespace的代码编译及修改。由于要分析代码,而阅读代码使用VS Code,因此整个模块安装在了Windows上面。rasa-pro默认是用python的env模式来进行的。
1.1 GitHub CodeSpace
直接访问这个地址 https://github.com/RasaHQ/codespaces-quickstart/ 来基于浏览器进行代码阅读。GitHub CodeSpace是一个基于浏览器的代码编写虚拟环境,进入后点击
这个是我的VSCode 打开的CodeSpace项目目录
1.2、本地使用Rasa Pro
由于GitHub WorkSpace远程操作的不稳定性,我在本地复杂了上面的目录部署了一套。先使用python env 创建 rasa pro 的python 虚拟环境
python -m venv rasa-env
rasa-env\Scripts\activate
安装 rasa pro ,在安装rasa pro 的时候可能会有环境影响而导致各种问题,正常是 pip install rasa-pro,如果在最后安装后有问题可以直接下载这个。最后的rasa代码在
最后的目录:XXXXX \rasa-pro\.venv\L