一、题目
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
示例1:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true
示例2:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false
二、代码
思路:
两次二分查找即可。二分查找是设置low,mid,high,并不断更新low=mid+1或者high=mid-1
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m=matrix.size(),n=matrix[0].size();
int low=0,high=m-1,mid,x;
while(low<=high){
mid=(low+high)/2;
if(matrix[mid][0]==target) return true;
else if(matrix[mid][0]<target){
if(mid+1<=m-1&&matrix[mid+1][0]>target){
break;
}else{
low=mid+1;
}
}else{
high=mid-1;
}
}
//target在mid行内
x=mid;
low=0,high=n-1;
while(low<=high){
mid=(low+high)/2;
if(matrix[x][mid]==target) return true;
else if(matrix[x][mid]<target){
low=mid+1;
}else{
high=mid-1;
}
}
return false;
}
};