74. 搜索二维矩阵
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
输入: matrix = [
[1, 3, 5, 7 ],
[10,11,16,20],
[23,30,34,60]
], target = 3
输出: true
搜索过程,从左下角23开始,23大于3,
向上缩小为10,10大于3,
向上缩小为1,1小于3,
向右扩大为3,3等于3,结束查找
23
10
1
3
/**
* @param {number[][]} matrix
* @param {number} target
* @return {boolean}
*/
var searchMatrix = function(matrix, target) {
let x = matrix.length - 1, y = 0;
while(x >= 0 && y < matrix[0].length) {
if(matrix[x][y] === target) {
return true;
} else if(matrix[x][y] > target) {
x--;
} else {
y++;
}
}
return false;
};
59. 螺旋矩阵 II
给你一个正整数 n
,生成一个包含 1
到 n2
所有元素,且元素按顺时针顺序螺旋排列的 n x n
正方形矩阵 matrix
。
输入: n = 3
输出: [
[1,2,3],
[8,9,4],
[7,6,5]
]
startX=0 startY=0
[ [ 1, 2, null ], [ null, null, null ], [ null, null, null ] ] 1
[ [ 1, 2, 3 ], [ null, null, 4 ], [ null, null, null ] ] 1
[ [ 1, 2, 3 ], [ null, null, 4 ], [ null, 6, 5 ] ] 1
[ [ 1, 2, 3 ], [ 8, null, 4 ], [ 7, 6, 5 ] ] 1
=======
输入: n = 4
输出: [
[1,2,3,4],
[12,13,14,5],
[11,16,15,6],
[10,9,8,7]
]
startX=0 startY