CF55D Beautiful numbers
题目描述
t t t 组测试样例,对于每组测试样例,给出 l , r l,r l,r。
求 [ l , r ] [l,r] [l,r] 区间内有多少个数可以被自己的每一个非零位上的数整除。
数据范围
1 ≤ t ≤ 10 1 \leq t \leq 10 1≤t≤10
1 ≤ l i ≤ r i ≤ 9 ⋅ 1 0 18 1 \leq l_i \leq r_i \leq 9 \cdot 10^{18} 1≤li≤ri≤9⋅1018
思路
求区间内满足要求的数字数量,可以使用数位 DP。
要解决这个问题,我们可以观察到以下性质:
- 如果一个数可以被一些数的最小公倍数整除,那这个数就可以被这些数字整除。
- 1 , 2 , … , 9 1,2,\ldots,9 1,2,…,9 的最小公倍数为 2520 2520 2520。
因为是 DP,考虑一下如何设置状态:
- 需要知道当前到了哪一位,开一维记录位置 p o s pos pos。
- 在所有数位放完后需要判断该数是否可被所有数位的最小公倍数整除,开两维分别记录当前数字 s u m sum sum 以及所有数位的最小公倍数 l c lc lc。
当前 DP 数组的大小为 d p [ 20 ] [ 9 ⋅ 1 0 18 ] [ 2521 ] dp[20][9 \cdot 10^{18}][2521] dp[20][9⋅1018][2521],明显是超过空间限制的。
可以发现我们记录数字仅用于判断是否整除,而我们如果先对 1 , 2 , … , 9 1,2,\ldots,9 1,2,…,9 的最小公倍数 2520 2520 2520 取模,效果是相同的。
优化后数组大小为 d p [ 20 ] [ 2521 ] [ 2521 ] dp[20][2521][2521] dp[20][2521][2521],计算发现仍然超过空间限制。
考虑优化第三维,由于记录的最小公倍数只可能是 2520 2520 2520 的因数,共 48 48 48 个,可以离散化优化空间。
这样,数组大小为 d p [ 20 ] [ 2521 ] [ 50 ] dp[20][2521][50] dp[20][2521][50] 符合空间限制。
其余部分与普通数位 DP 基本相同,并且本题只考虑非零位,前导零不影响答案。
代码
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int const mod=2520;//1,2,……9的最小公倍数
int t,num[20],mp[2521];
ll dp[20][2521][50];
void init()//初始化
{
memset(dp,-1,sizeof(dp));
int cnt=0;
for(int i=1;i<=2520;i++)
{
if(2520%i==0)
mp[i]=++cnt;//离散2520的所有因数
}
}
ll gcd(ll a,ll b)//最大公因数
{
if(b>0)return gcd(b,a%b);
else return a;
}
ll lcm(ll a,ll b)//最小公倍数
{
return a/gcd(a,b)*b;
}
/*
处理到pos位
数字模2520为sum
所有位最小公倍数为lc
limit表示是否为范围最大数
*/
ll dfs(int pos,int sum,int lc,bool limit)
{
if(pos==0)//所有位处理完
{
if(sum%lc==0)//可被整除,答案加1
return 1;
else
return 0;
}
if(!limit&&dp[pos][sum][mp[lc]]!=-1)//记忆化
return dp[pos][sum][mp[lc]];
ll ans=0;
int up;
if(limit)up=num[pos];
else up=9;
for(int i=0;i<=up;i++)//继续向下搜索
{
if(i==0)ans+=dfs(pos-1,(sum*10)%mod,lc,limit&i==up);
else ans+=dfs(pos-1,(sum*10+i)%mod,lcm(lc,i),limit&i==up);
}
if(!limit)dp[pos][sum][mp[lc]]=ans;//保存答案
return ans;
}
ll solve(ll x)
{
int len=0;
while(x)
{
num[++len]=x%10;
x/=10;
}
return dfs(len,0,1,1);
}
int main()
{
init();
scanf("%d",&t);
while(t--)
{
ll l,r;
scanf("%lld%lld",&l,&r);
printf("%lld\n",solve(r)-solve(l-1));//分别处理[1,r]和[1,l-1]
}
return 0 ;
}