线性模型|| 线性回归(Linear Regression)

本文介绍了线性模型的概念,包括线性模型的一般式和权重参数的含义。重点讲解了线性回归(LR)算法的直观原理,通过房屋面积预测房价的例子阐述了其工作原理,并提供了算法步骤。最后,文章展示了使用Python实现线性回归算法的代码片段。
摘要由CSDN通过智能技术生成

目录:

一、线性模型概念

二、LR算法直观原理

三、Python代码实现算法


(notice:

1)公式中,字母粗体以示向量

2)本文中LR指代Linear Regression,而非Logistic Regression)


一、线性模型概念

1、线性模型

所谓线性模型,就是把事物的特征属性,按照线性组合的方式构造出假设函数(Hypothesis)并加以训练的一种算法模型。

2、线性模型一般式

h θ ( x ) = θ T ⋅ x + b h_\theta(x) = \boldsymbol\theta^T·\textbf{x} + b hθ(x)=θTx+b
= θ 1 ⋅ x 1 + θ 2 ⋅ x 2 + ⋯ + θ n ⋅ x n + b = \theta_1·x_1 + \theta_2·x_2 +\cdots+ \theta_n·x_n + b =θ1x1+θ2x2++θnx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值