快速排序算法介绍
算法名称:快速排序(Quick Sort)
算法概述:
快速排序是一种高效的排序算法,采用分治法的策略来把一个序列分为较小和较大的两个子序列,然后递归地排序两个子序列。其基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
时间复杂度:
最优时间复杂度:O(n log n)
平均时间复杂度:O(n log n)
最差时间复杂度:O(n^2)(当输入数组已经有序时)
空间复杂度:O(log n)(递归栈的使用)
稳定性:不稳定
适用场景:
快速排序特别适合于大数据量的排序,适用于不需要稳定排序的场合。
算法刷题
题目:实现快速排序算法
解析:
快速排序的核心是分区(partition)操作,通过选取一个“基准”元素,将数组分为两部分,左边部分的所有元素都不大于基准值,右边部分的所有元素都不小于基准值,然后递归地对这两部分进行快速排序。
代码实现(Python):
python
复制
def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2] # 选择中间元素作为基准
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quick_sort(left) + middle + quick_sort(right)
# 测试代码
arr = [3, 6, 8, 10, 1, 2, 1]
sorted_arr = quick_sort(arr)
print(sorted_arr)
笔试面试算法题
题目:给定一个整数数组 nums,找出其中所有出现超过 ⌊ n/3 ⌋ 次的元素。数组的大小是 n。
解析:
这个问题是快速排序中分区思想的一个变种。由于要找的元素出现次数超过 ⌊ n/3 ⌋,那么最多只会有两个这样的元素。我们可以使用两个变量 candidate1 和 candidate2 来分别记录可能的候选元素,并使用两个计数器 count1 和 count2 来记录这两个候选元素的出现次数。
思路:
遍历数组,使用两个变量和两个计数器来跟踪候选元素和它们的出现次数。
如果某个元素既不是 candidate1 也不是 candidate2,则根据 count1 和 count2 的值,更新候选元素和计数器。
再次遍历数组,统计 candidate1 和 candidate2 的实际出现次数,判断是否超过 ⌊ n/3 ⌋。
代码实现(Python):
python
复制
def majorityElement(nums):
candidate1, candidate2 = None, None
count1, count2 = 0, 0
# 第一步:找出候选元素
for num in nums:
if candidate1 == num:
count1 += 1
elif candidate2 == num:
count2 += 1
elif count1 == 0:
candidate1, count1 = num, 1
elif count2 == 0:
candidate2, count2 = num, 1
else:
count1 -= 1
count2 -= 1
# 第二步:验证候选元素
count1, count2 = 0, 0
for num in nums:
if num == candidate1:
count1 += 1
elif num == candidate2:
count2 += 1
result = []
if count1 > len(nums) // 3:
result.append(candidate1)
if count2 > len(nums) // 3:
result.append(candidate2)
return result
# 测试代码
nums = [3, 2, 3]
print(majorityElement(nums)) # 输出: [3]
希望这个文档对你有所帮助!如果你有任何其他问题,随时都可以问我哦。