快速排序算法介绍

快速排序算法介绍

 

算法名称:快速排序(Quick Sort)

 

算法概述:

快速排序是一种高效的排序算法,采用分治法的策略来把一个序列分为较小和较大的两个子序列,然后递归地排序两个子序列。其基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

 

时间复杂度:

 

最优时间复杂度:O(n log n)

平均时间复杂度:O(n log n)

最差时间复杂度:O(n^2)(当输入数组已经有序时)

 

空间复杂度:O(log n)(递归栈的使用)

 

稳定性:不稳定

 

适用场景:

快速排序特别适合于大数据量的排序,适用于不需要稳定排序的场合。

 

算法刷题

 

题目:实现快速排序算法

 

解析:

快速排序的核心是分区(partition)操作,通过选取一个“基准”元素,将数组分为两部分,左边部分的所有元素都不大于基准值,右边部分的所有元素都不小于基准值,然后递归地对这两部分进行快速排序。

 

代码实现(Python):

 

python

复制

def quick_sort(arr):

    if len(arr) <= 1:

        return arr

    pivot = arr[len(arr) // 2] # 选择中间元素作为基准

    left = [x for x in arr if x < pivot]

    middle = [x for x in arr if x == pivot]

    right = [x for x in arr if x > pivot]

    return quick_sort(left) + middle + quick_sort(right)

 

# 测试代码

arr = [3, 6, 8, 10, 1, 2, 1]

sorted_arr = quick_sort(arr)

print(sorted_arr)

 

笔试面试算法题

 

题目:给定一个整数数组 nums,找出其中所有出现超过 ⌊ n/3 ⌋ 次的元素。数组的大小是 n。

 

解析:

这个问题是快速排序中分区思想的一个变种。由于要找的元素出现次数超过 ⌊ n/3 ⌋,那么最多只会有两个这样的元素。我们可以使用两个变量 candidate1 和 candidate2 来分别记录可能的候选元素,并使用两个计数器 count1 和 count2 来记录这两个候选元素的出现次数。

 

思路:

 

遍历数组,使用两个变量和两个计数器来跟踪候选元素和它们的出现次数。

如果某个元素既不是 candidate1 也不是 candidate2,则根据 count1 和 count2 的值,更新候选元素和计数器。

再次遍历数组,统计 candidate1 和 candidate2 的实际出现次数,判断是否超过 ⌊ n/3 ⌋。

 

代码实现(Python):

 

python

复制

def majorityElement(nums):

    candidate1, candidate2 = None, None

    count1, count2 = 0, 0

 

    # 第一步:找出候选元素

    for num in nums:

        if candidate1 == num:

            count1 += 1

        elif candidate2 == num:

            count2 += 1

        elif count1 == 0:

            candidate1, count1 = num, 1

        elif count2 == 0:

            candidate2, count2 = num, 1

        else:

            count1 -= 1

            count2 -= 1

 

    # 第二步:验证候选元素

    count1, count2 = 0, 0

    for num in nums:

        if num == candidate1:

            count1 += 1

        elif num == candidate2:

            count2 += 1

 

    result = []

    if count1 > len(nums) // 3:

        result.append(candidate1)

    if count2 > len(nums) // 3:

        result.append(candidate2)

 

    return result

 

# 测试代码

nums = [3, 2, 3]

print(majorityElement(nums)) # 输出: [3]

 

 

希望这个文档对你有所帮助!如果你有任何其他问题,随时都可以问我哦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值