python ddt 实现数据驱动
DDT又叫数据驱动(Data-Driven Design),在Python ddt作为一个装饰器存在,用来实现数据的参数化,这样就可以将代码和测试数据分开,将代码进行封装,提高复用性。
测试数据在本地文件或数据库进行维护。
使用方法:使用时在测试类上声明@ddt装饰符,在测试方法上使用@data装饰符;@data装饰符可以将参数当做测试数据传入到测试方法中
ddt 是第三方模块,需安装, pip install ddt
DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据)
通常情况下,data中的数据按照一个参数传递给测试用例,如果data中含有多个数据,以元组,列表,字典等数据,需要自行在脚本中对数据进行分解或者使用unpack分解数据。
@data(a,b)
那么a和b各运行一次用例
@data([a,d],[c,d])
如果没有@unpack,那么[a,b]当成一个参数传入用例运行
如果有@unpack,那么[a,b]被分解开,按照用例中的两个参数传递
具体看下面的例子:
import unittest
from ddt import ddt,data,unpack
@ddt
class MyTesting(unittest.TestCase):
def setUp(self):
print('this is the setUp')
@data([1,2,3])
def test_1(self,value):
print(value)
@data([3,2,1],[5,3,2],[10,4,6])
@unpack
def test_minus(self,a,b,expected):
actual = int(a) - int(b)
expected = int(expected)
self.assertEqual(actual, expected)
@data([2,3],[4,5])
@unpack
def test_compare(self,a,b):
self.assertEqual(a,b)
def tearDown(self):
print('this is tearDown')
if __name__ == '__main__':
unittest.main(verbosity=2)
结果分析:
1. test_1的测试结果是ok的, 因为 [1,2,3] 作为一个整体传给value,所有value 打印的值是[1,2,3]
test_1_1__1__2__3_ (__main__.MyTesting) ... ok
test_compare_1__2__3_ (__main__.MyTesting) ... ERROR
[1, 2, 3]
2. test_minus的测试结果也是ok的,由于在@data(...)下加了@unpack, 代表会把数据分解,得到3组测试数据,分别为:
1.[3,2,1]
2.[5,3,2]
3.[10,4,6]
test_minus_1__3__2__1_ (__main__.MyTesting) ... ok
test_minus_2__5__3__2_ (__main__.MyTesting) ... ok
test_minus_3__10__4__6_ (__main__.MyTesting) ... ok
3. test_compare的测试结果是fail的,由于没有加@unpack, 虽然还是会被理解成2组测试数据,但是[2,3]作为一个整体被传给了a, 因为b就没有值传入了,所以一执行后报了 TypeError: test_compare() missing 1 required positional argument: 'b' 这句错。
test_compare_1__2__3_ (__main__.MyTesting) ... ERROR
test_compare_2__4__5_ (__main__.MyTesting) ... ERROR
this is the setUp
ERROR: test_compare_1__2__3_ (__main__.MyTesting)
this is tearDown
----------------------------------------------------------------------
Traceback (most recent call last):
File "D:\python\lib\site-packages\ddt.py", line 139, in wrapper
return func(self, *args, **kwargs)
TypeError: test_compare() missing 1 required positional argument: 'b'
======================================================================
ERROR: test_compare_2__4__5_ (__main__.MyTesting)
----------------------------------------------------------------------
Traceback (most recent call last):
File "D:\python\lib\site-packages\ddt.py", line 139, in wrapper
return func(self, *args, **kwargs)
TypeError: test_compare() missing 1 required positional argument: 'b'
@data()里的数据组可以为元祖,list,字典
@ddt
class MyTest(unittest.TestCase):
@data((8, 6), (4, 0), (15, 6))
@unpack
def test_tuples(self, first, second):
self.assertTrue(first > second)
@data([30, 29], [40, 30], [5, 3])
@unpack
def test_list(self, first, second):
self.assertTrue(first > second)
@data({'first': 1, 'second': 3, 'third': 5},
{'first': 4, 'second': 7, 'third': 8})
@unpack
def test_dicts(self, first, second, third):
self.assertTrue(first < second < third)
if __name__ == '__main__':
unittest.main(verbosity=2)
def get_Csv(filename):
rows = []
with open(filename,encoding='utf-8') as f:
readers = csv.reader(f)
for row in readers:
rows.append(row)
return rows
@ddt
class MyTest(unittest.TestCase):
@data(*get_Csv('test_csv.csv'))
@unpack
def test_data_csv(self,v1,v2,v3):
print(v1)
print(v2)
print(v3)
下边主要是关于文件的数据驱动。
一、通过json文件驱动
@ddt
class MyTest(unittest.TestCase):
@file_data('test_data_list.json')
def test_data_list(self,value):
print(value)
@file_data('test_data_dict.json')
def test_data_dict(self,value):
print(value)
二、通过yaml文件驱动
pip install pyyaml进行安装
直接import yaml,右键运行py文件,不报错,则为导入成功。
PyYaml简介
YAML是一种容易阅读、适合表示程序语言的数据结构、可用于不同程序间交换数据、丰富的表达能力和可扩展性、易于使用的语言。通过缩进或符号来表示数据类型。
Yaml提供了多种方法,常用的为yaml.load和yaml.dump。
它的基本语法规则如下:
- 大小写敏感
- 使用缩进表示层级关系
- 缩进时不允许使用Tab键,只允许使用空格。
- 缩进的空格数目不重要,只要相同层级的元素左侧对齐即可
#
表示注释,从这个字符一直到行尾,都会被解析器忽略,这个和python的注释一样
PyYaml文件编写格式
yaml文档除了可以通过dump进行转化之外,也可以根据yaml文档的格式进行编写。
- 对象的一组键值对,使用冒号结构表示。
- 一组减号开头的行,构成一个list。
- 对象和数组可以结合使用,形成复合结构。
- ~ 代表None
- 布尔类型 直接写bool: True False
YAML 支持的数据结构有三种:
1、对象:键值对的集合,又称为映射(mapping)/ 哈希(hashes) / 字典(dictionary)
2、数组:一组按次序排列的值,又称为序列(sequence) / 列表(list)
3、纯量(scalars):单个的、不可再分的值。字符串、布尔值、整数、浮点数、Null、时间、日期
import yaml
#写入yaml文件
# yaml.dump 将一个Python对象生成为yaml文档。参数一为要转为yaml文档的数据,参数二必须为一个已经打开的文件对象。
with open('dump.yml','w') as f:
d ={
'student':{
'name':'aa',
'age':20,
'love':{
'ball':'volleyball',
'book':'Python'
}
},
'teacher':{
'name': 'bb',
'age': 20
},
'data':[2,3,4,5]
}
yaml.dump(d,f)
#加载yaml文件
with open('dump.yml','r') as f:
data = yaml.load(f)
print(data)
yaml.dump([data,filehandle])
yaml.dump 将一个Python对象生成为yaml文档。参数一为要转为yaml文档的数据,参数二必须为一个已经打开的文件对象。
这里是将转成的yaml格式保存到文件里,以下是保存到文件里的数据。
yaml.load([filehandle])
yaml.load接收文件句柄,将yml文件中的数据转为Python的数据类型。
下面是输出的结果:
{'data': [2, 3, 4, 5], 'teacher': {'age': 20, 'name': 'bb'}, 'student': {'age': 20, 'love': {'ball': 'volleyball', 'book': 'Python'}, 'name': 'aa'}}
可以将yaml与ddt联合应用,将yaml作为数据存储,可以将test case写在yaml文件里。
@file_data('test_data2.yml')
def test_data_yaml(self,value):
print(value)
print(type(value))
打印的结果为:
[{'pass': {'case1': {'password': '001', 'username': 'aa'}, 'case2': {'password': '002', 'username': 'bb'}}}, {'fail': {'case3': {'password': '003', 'username': 'cc'}}}]
<class 'list'>
- 组合使用后,通过yaml的数据来控制case的执行
- yaml文档的使用,使case维护更加方便快捷