右边是我女神
码龄2年
  • 70,227
    被访问
  • 210
    原创
  • 12,068
    排名
  • 206
    粉丝
关注
提问 私信

个人简介:qq:1240810317 欢迎交流

  • 毕业院校: 大连理工大学
  • 加入CSDN时间: 2020-02-19
博客简介:

weixin_46365033的博客

查看详细资料
  • 5
    领奖
    总分 1,358 当月 86
个人成就
  • 获得133次点赞
  • 内容获得34次评论
  • 获得214次收藏
创作历程
  • 53篇
    2022年
  • 157篇
    2021年
成就勋章
TA的专栏
  • 知识工程
    3篇
  • 我的项目
    4篇
  • 机器学习
    13篇
  • 算法竞赛入门
    9篇
  • 数据结构、算法与应用(C++)
    12篇
  • 智能机器人
    6篇
  • 基于《算法图解》与《数据结构与算法(python语言实现)》
    15篇
  • c++
    36篇
  • Leetcode
    4篇
  • 视频分割
    9篇
  • 电子技术
    25篇
  • 图像处理基础
    2篇
  • 自然语言处理
    8篇
  • 深度学习基础
    18篇
  • matplotlib
    2篇
  • 目标检测
    12篇
  • pytorch
    18篇
  • 信息论
    1篇
  • OpenCV
    8篇
  • numpy
    4篇
兴趣领域 设置
  • 人工智能
    计算机视觉
  • 最近
  • 文章
  • 收藏
  • 资源
  • 问答
  • 帖子
  • 关注/订阅/互动
搜TA的内容
搜索 取消

SiamCAR:Siamese Fully Convolutional Classification and Regression for Visual Tracking

文章目录AbstractIntroductionProposed MethodFeature ExtractionBounding Box PredictionThe Tracking Phase值得关注的几个问题Q1:输入的图片大小不一?Q2:在两者做相关性之前,如何得到特征图?Abstract通过将视觉跟踪任务分解为两个子问题(像素类别的分类和该像素处的边界框的回归),本文以逐像素的方式提出了全卷积Siamese网络来解决视觉跟踪问题。该框架由两个简单的子网络组成:一个用于特征提取,另一个用于边界
原创
发布博客 2022.05.18 ·
230 阅读 ·
0 点赞 ·
0 评论

第三章 k近邻法

文章目录基本概况KNN算法k近邻模型模型距离度量k值的选择分类决策规则k近邻法的实现:kd树构造kd树搜索kd树基本概况KNN是一种基本的分类和回归方法。该文只讨论分类问题中的KNN。KNN的输入为实例的特征向量,输出为实例的类别,可以取多类。k值的选择、距离的度量以及分类决策规则是k近邻法的三个基本要素。KNN算法算法3.1:输入:训练数据集T,其中xi∈Xx_i\in\mathbb{X}xi​∈X为实例向量,yi∈Y={c1,c2,...cK}y_i\in\mathbb{Y}=\{c_1,
原创
发布博客 2022.05.16 ·
122 阅读 ·
0 点赞 ·
0 评论

数论初步与例题

文章目录Eratosthenes筛法唯一分解定理&分解质因数扩展欧几里得算法模数&同余模数同余Eratosthenes筛法#include <iostream>#include <cmath>#include <cstring>using namespace std;#define MAX 10000int N;int not_prime[MAX];void Eratosthenes(int n){ int m = sqrt(n+
原创
发布博客 2022.05.13 ·
18 阅读 ·
0 点赞 ·
0 评论

第二章 感知机

文章目录引入感知机模型感知机学习策略数据集的线性可分感知机学习策略感知机学习算法算法的收敛性感知机学习算法的对偶形式引入感知机是二分类的线性模型,输入是实例的特征向量,输出为实例的类别(取-1或+1)。感知机对应于输入空间中将实例划分为正负两类的分离超平面,属于判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化。感知机学习算法简单且易于实现,分为原始形式和对偶形式。感知机是神经网络和支持向量机的基础。感知机模型定义
原创
发布博客 2022.05.12 ·
128 阅读 ·
0 点赞 ·
0 评论

第一章 统计学习及监督学习概论

文章目录统计学习的概述统计学习的分类基本分类监督学习统计学习的概述赫尔伯特-西蒙:如果一个系统能够通过执行某个过程改进它的性能,这就是学习。统计学习的属性描述核心计算机系统通过运用数据及统计方法提高系统性能的机器学习对象数据前提同类数据具有一定的统计规律性目的对数据的预测与分析,特别是对位置新数据的预测与分析方法监督学习、无监督学习、强化学习等组成;基于数据构建概率模型从而对数据进行预测与分析研究统计学习方法(开发新的学习方法)、统计学习理
原创
发布博客 2022.05.11 ·
115 阅读 ·
0 点赞 ·
0 评论

知识工程重点知识介绍-3

文章目录SPARQL的四种查询方式SELECTCONSTRUCTASKDESCRIBESPARQL的四种查询方式SELECT单三元组模式、最简单的图模式查询张三认识的其他程序员PREFIX ex:<http://www.example.com/> SELECT ?p WHERE{ex:zhangsan ex:know ?p.}抽象来看SELECT <variable>WHERE{ <graph pattern>}说明:SPARQL的变量以
原创
发布博客 2022.05.10 ·
248 阅读 ·
1 点赞 ·
0 评论

知识工程重点知识介绍-2

文章目录Q8:关系抽取的三类常用方法及其优缺点基于模版、规则的方法(触发词)依存句法分析基于传统机器学习的方法基于特征向量的关系抽取方法基于核函数的关系抽取方法两个方法之间的比较基于深度学习的方法基于CNN的方法与机器学习任务相比Q9:知识融合的两种方式&常用工具&实体对齐的常用方法引言一般流程本体匹配本体匹配工具:Falcon-AO实体对齐实体对齐(实体匹配)的常用方法基于快速相似度计算的实例匹配方法基于规则的实例匹配方法基于分治的实例匹配方法基于学习的实例匹配方法实体对齐工具Q8:关系
原创
发布博客 2022.05.06 ·
550 阅读 ·
1 点赞 ·
0 评论

知识工程重点知识介绍-1

文章目录Q1:知识工程的发展简史前世今生(AI与推理)爱德华-费根鲍姆兴起与发展Q2:知识图谱的定义Q3:知识图谱的代表性项目及其特点Q1:知识工程的发展简史上图为知识工程发展的代表性人物(获得图灵奖时间不代表成果提出时间)。前世今生(AI与推理)达特茅斯会议之后,最具代表性的成果为:A.Newell(纽厄尔)、J.Shaw(肖)和H.Simon等人编制出了逻辑机LT,能够证明38条数学定理。1956年,Samuel/塞缪尔研制出跳棋程序,具有自学习功能,掀起AI的高潮。1960年,A.New
原创
发布博客 2022.05.03 ·
845 阅读 ·
1 点赞 ·
0 评论

迭代加深搜索

文章目录埃及分数问题代码基于此题对迭代加深搜索的思考针对该题的一些注意点基于百度百科对迭代深化搜索的理解编辑书籍我在思考中的疑惑代码解答埃及分数问题代码#include <iostream>#include <cstdio>#include <cstring>#include <algorithm>#include <cassert>using namespace std;int a, b, maxd;typedef long
原创
发布博客 2022.04.20 ·
566 阅读 ·
0 点赞 ·
0 评论

路径寻找问题

文章目录关于图的路径寻找问题八数码问题代码流程图重点查重哈希技术关于图的路径寻找问题图与树的最大差别在于图没有层次结构,说不定当前的节点的子节点就是上上层的某一个节点。所以说,对于图来说,如何查重是很重要的。对于路径寻找问题,深度优先可以帮助我们找到一条路径,而广度优先可以帮助我们找到一条最短的路径。八数码问题代码// 八数码,使用STL集合,最好写#include<cstdio>#include<cstring>#include<set>using
原创
发布博客 2022.04.19 ·
676 阅读 ·
0 点赞 ·
0 评论

开启Latex

文章目录基本框架加粗的方法首行缩进与否基本框架\documentclass{article}\usepackage{ctex}\title{title}\author{name}\begin{document} \maketitle\end{document}加粗的方法对于文本 \textbf{}对于公式 \mathbf{}首行缩进与否
oident\indent...
原创
发布博客 2022.04.14 ·
29 阅读 ·
0 点赞 ·
0 评论

暴力求解法—子集生成

文章目录增量构造法位向量法二进制法总结增量构造法逐渐将要选择的元素加入特定的数组中去,所以每一次选择都要输出一次结果。#include <iostream>using namespace std;int cnt = 0;void print_subset(int n, int A[], int cur){ for(int i=0;i<cur;i++) printf("%d ",A[i]); printf("
"); cnt++;
原创
发布博客 2022.04.13 ·
51 阅读 ·
0 点赞 ·
0 评论

暴力求解法—排列枚举

生成1~n的排列#include <iostream>using namespace std;void print_permutation(int n, int A[], int cur){ if(cur == n){ for(int i=0; i<n; i++) printf("%d ",A[i]); printf("
"); } else for(int i=1; i<=n; i++){
原创
发布博客 2022.04.12 ·
48 阅读 ·
0 点赞 ·
0 评论

暴力求解法-简单枚举

文章目录UVa725题目的分析大佬的方法我的答案总结UVa 11059题解Uva 10976我的思路UVa725题目的分析看似我们需要枚举10!10!10!个数。实际上,我们可以枚举出fghijfghijfghij就可以算出abcdeabcdeabcde。如果abcde中的数有重复、与fghij有重复以及超过了5位,那么都认为是不符合要求的。另外,关于输入,其要求能够循环输入,直至遇到0代表着终止。大佬的方法#include<cstdio>#include<cstring&
原创
发布博客 2022.04.11 ·
476 阅读 ·
0 点赞 ·
0 评论

Abbott‘s Revenge

/* SAMPLE 3 1 N 3 3 1 1 WL NR * 1 2 WLF NR ER * 1 3 NL ER * 2 1 SL WR NF * 2 2 SL WF ELF * 2 3 SFR EL * 0 NOSOLUTION 3 1 N 3 2 1 1 WL NR * 1 2 NL ER * 2 1 SL WR NFR * 2 2 SR EL * 0 END */#include <iostream>#include <cstring&
原创
发布博客 2022.04.09 ·
257 阅读 ·
0 点赞 ·
0 评论

图论的基础

文章目录基本概念特性图的术语:顶点、边、邻接、关联、度、回路、路径、连通构建、生成树。图的类型:无向图、有向图和加权图。图的常用描述方式:邻接矩阵、矩阵邻接表和邻接链表。图的标准搜索方法:广度优先搜索和深度优先搜索。基本概念图是一个用线或边连接在一起的顶点或节点的集合。G=<V,E>G=<V,E>G=<V,E>,其中V的元素称为顶点/节点/点,E的元素称为边/弧/线。带方向的边称为有向边,反之称为无向边。对于无向边,当且仅当(i,j)(i,j)(i,j)
原创
发布博客 2022.04.08 ·
412 阅读 ·
0 点赞 ·
0 评论

根据中序及后序构建树及深度优先

#include <iostream>#include <vector>#include <stack>#include <cstdio>#include <string>#include <sstream>using namespace std;vector<int> in_order,post_order;int minimum = 10000;struct Node{ int val;
原创
发布博客 2022.04.07 ·
694 阅读 ·
0 点赞 ·
0 评论

关于“对拍”的几个重要组成部分

文章目录对拍算法文件数据生成器批处理文件对拍对拍需要四个组成部分:算法文件;用于比较的、简易的算法文件;数据生成器;批处理文件。算法文件/* 题目描述:输入n个整数,现在有m个形如[x,y]的提问,即问第x个数到第y个数之和是多少?现在需要你写一程序对每个提问做出快速回答。 1<=n<=100000 1<=m<=50000 输入格式:第一行,两个整数n和m 第二行,n个空格间隔的整数,每个整数的范围在[-10000,10000]之间 接下来m行,每行两个整数
原创
发布博客 2022.04.06 ·
115 阅读 ·
0 点赞 ·
0 评论

ORB_SLAM2 代码分析及介绍(视觉VO及重定位,Tracking)第三部分

文章目录Tracking的运行管理者:状态跟踪初始化Tracking的运行管理者:状态跟踪枚举eTrackingState用于表示跟踪状态,总共有两个变量,分别是mState和mLastProcessedState,表示当前帧的跟踪状态和上一帧的跟踪状态。其状态转移图如下所示:初始化初始化分为单目相机的初始化与双目/RGBD相机的初始化。单目相机的初始化过程在先前已经作了介绍。在完成初始化后,调用CreateInitialMapMonocular函数创建初始化地图。void Trackin
原创
发布博客 2022.04.01 ·
217 阅读 ·
0 点赞 ·
0 评论

ORB_SLAM2 代码分析及介绍(视觉VO及重定位,Tracking)第二部分

文章目录Frame中包含的信息畸变矫正UndistorKeyPoints对双目/RGB-D特征点的预处理双目特征点的处理ComputeSteroMatches深度计算公式原理RGB特征点的处理ComputeStereoFromRGBDFrame中包含的信息普通帧管好自己,关键帧服务优化与回环。首先是存储了相机的一些基础信息,比如相机的内参、基线等等,这从配置文件中读入,在构造函数中为其赋值。// StereoFrame::Frame(const cv::Mat &imLeft, const
原创
发布博客 2022.03.30 ·
357 阅读 ·
0 点赞 ·
0 评论
加载更多