C-COT -- 超越相关滤波:学习连续卷积算子(Continuous Convolution Operators)

 

在目标跟踪算法中,ECO算法表现很优秀,是基于C-COT跟踪算法的改进(Martin 林雪平大学)。因此学习C-COT是理解和改

进ECO算法的基础和关键。

 

一、C-COT算法的整体核心原理如下图所示:

 

                       多分辨率深度特征图         习得的连续卷积滤波器      每层置信度              最终的连续置信度输出函数

 

  图中是可视化的应用于多分辨率深度特征映射的连续卷积算子。 第一列是输入的 RGB patch 和预训练好的深层网络的第

一个卷积层和最后一个卷积层的特征图。第二列是框架学习到的连续卷积滤波器的可视化。每一层连续卷积输出的结果(第三

列)被组合成目标(绿色框)的最终连续置信度函数(第四列)。

  文章提出一种用于学习连续空间域中的卷积算子的新公式,采用训练样本的隐式插值模型。通过学习一组卷积滤波器来产

生目标的连续域置信度图。 这可以在联合学习公式中实现多分辨率特征映射的完美融合。

  除了多分辨率融合之外,连续域学习公式还可以实现精确的亚像素定位。 这一点通过用亚像素精确连续置信度图标记训练

样本来实现。因此这种构造也适用于精确特征点跟踪。

  此外,这样的学习的方法具有辨别性,并且不需要在图像上明确插值实现亚像素精度。且已在流行的MPI Sintel数据上进行

了广泛的特征点跟踪实验,证明了C-COT的准确性和鲁棒性。

 

二、相关介绍和工作

     判别相关滤波器(DCF)表现让人满意。这些方法利用滑动窗口的循环相关属性训练回归器。最初,DCF方法仅限于单通

道特道。 后来DCF框架扩展到多通道特征图。多通道DCF可以将高维特征(如HOG和CN Color Names)纳入其中。除了包含

多通道特征之外,DCF框架最近也通过加入尺度估计(Scale Estimation),非线性核函数(Non-linear kernels),长期记忆(long-

term memory),和减轻循环卷积的周期性影响等方法进行了显著改进。

  随着深度CNN的出现,网络的全连接层被普遍用于图像表示。最近,最后一层卷积层被证明对图像分类更有利。另一方

面,与深层相比,第一层(浅层)的卷积层更适合视觉跟踪。深卷积层具有判别性,并具有高级视觉信息。相反,浅层包含高

空间分辨率的低层特征,有利于定位。独立DCF跟踪器的分层集合中采用了多个卷积层。与之相反,C-COT框架中提出了一种

新型的的连续方程,在这个联合学习框架中融合具有不同空间分辨率的多个卷积层。

  而特征点跟踪不同于目标跟踪,它是准确评估特殊关键点运动的任务。大多数特征点跟踪方法都来自经典的KLT跟踪器。

KLT跟踪器是一种生成方法,原理是最小化两个图像块之间差异的平方和。在过去的几十年里,花费了大量精力来改进KLT跟踪

器。相比之下,C-COT是一种基于判别式学习的特征点跟踪方法。我们的方法:我们的主要贡献是用于学习连续空间域中的区

分卷积算子的理论框架。

 

C-COT与传统的DCF框架相比具有两大优势:

(1)允许多分辨率特征图的自然整合,如卷积层或多分辨率HOG和颜色特征的组合。特别适用于对象跟踪,检测和动作识别。

(2)连续公式能够实现准确的亚像素定位,这在许多特征点跟踪问题中至关重要。

 

三、学习连续卷积算子(Continuous Convolution Operators)

本节提出学习连续卷积算子的理论框架。 其中的公式是通用的,可用于有监督学习任务,如视觉跟踪和检测。

(1) 首先,在一维空间定义学习公式和方法。

复值函数 在空间 中,以 0 )为周期且勒贝格平方可积。 是一个希尔伯特空间,在此空间上

定义内积算子 ,则对于函数 ,有傅里叶变换对:

傅里叶级数定义为:

  • 12
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值