数据挖掘十大经典算法 <一> :Adaboost算法

研究在Schapire的大作中提到了一个Toy Game的例子,这里给出了一个类似的Matlab代码。

   先上一段代码:

首先是程序需要产生一些随机的样本数据,然后分别调用其他的matlab函数实现分类结果输出。代码如下:

clear all
clc
tr_n=200;   %the population of the train set
te_n=200;   %the population of the test set
weak_learner_n=20; %the population of the weak_learner
tr_set=[1,5;2,3;3,2;4,6;4,7;5,9;6,5;6,7;8,5;8,8];
te_se=[1,5;2,3;3,2;4,6;4,7;5,9;6,5;6,7;8,5;8,8];
tr_labels=[2,2,1,1,2,2,1,2,1,1];
te_labels=[2,2,1,1,2,2,1,2,1,1];
figure;
subplot(2,2,1);
hold on;axis square;
indices=tr_labels==1;
plot(tr_set(indices,1),tr_set(indices,2),'b*');
indices=~indices;
plot(tr_set(indices,1),tr_set(indices,2),'r*');
title('Training set');
subplot(2,2,2);
hold on;axis square;
indices=te_labels==1;
plot(te_set(indices,1),te_set(indices,2),'b*')3
;
indices=~indices;
plot(te_set(indices,1),te_set(indices,2),'r*');
title('Training set');
% Training and testing error rates
tr_error=zeros(1,weak_learner_n);
te_error=zeros(1,weak_learner_n);
for i=1:weak_learner_n
    adaboost_model=adaboost_tr(@threshold_tr,@threshold_te,tr_set,tr_labels,i);
    [L_tr,hits_tr]=adaboost_te(adaboost_model,@threshold_te,te_set,te_labels);
    tr_error(i)=(tr_n-hits_tr)/tr_n;
    [L_te,hits_te]=adaboost_te(adaboost_model,@threshold_te,te_set,te_labels);
    te_error(i)=(te_n-hits_te)/te_n;
end

subplot(2,2,3);
plot(1:weak_learner_n,tr_error);
axis([1,weak_learner_n,0,1]);
title('Training Error');
xlabel('weak classifier number');
ylabel('error rate');
grid on;

subplot(2,2,4);axis square;
plot(1:weak_learner_n,te_error);
axis([1,weak_learner_n,0,1]);
title('Testing Error');
xlabel('weak classifier number');
ylabel('error rate');
grid on;

 

这里需要另外分别撰写两个函数,其中一个为生成adaboost模型的训练函数,另外为测试测试样本的测试函数。代码如下:

function adaboost_model=adaboost_tr(tr_func_handle,te_func_handle,train_set,labels,no_of_hypothesis)
% 训练函数

adaboost_model = struct('weights',zeros(1,no_of_hypothesis),...
                        'parameters',[]); %cell(1,no_of_hypothesis));

sample_n = size(train_set,1);
samples_weight = ones(sample_n,1)/sample_n;

for turn=1:no_of_hypothesis
    adaboost_model.parameters{turn} = tr_func_handle(train_set,samples_weight,labels);
    [L,hits,error_rate] = te_func_handle(adaboost_model.parameters{turn},...
                                        train_set,samples_weight,labels);
    if(error_rate==1)
        error_rate=1-eps;
    elseif(error_rate==0)
        error_rate=eps;
    end

    % The weight of the turn-th weak classifier
    adaboost_model.weights(turn) = log10((1-error_rate)/error_rate);
    C=likelihood2class(L);
    t_labeled=(C==labels);    % true labeled samples

    % Importance of the true classified samples is decreased for the next weak classifier
    samples_weight(t_labeled) = samples_weight(t_labeled)*...
                    ((error_rate)/(1-error_rate));               

    % Normalization
    samples_weight = samples_weight/sum(samples_weight);
end

% Normalization
adaboost_model.weights=adaboost_model.weights/sum(adaboost_model.weights);
-------------

function [L,hits]=adaboost_te(adaboost_model,te_func_handle,test_set,...
                              true_labels)
%测试函数
hypothesis_n=length(adaboost_model.weights);
sample_n=size(test_set,1);
class_n=length(unique(true_labels));
temp_L=zeros(sample_n,class_n,hypothesis_n);

for i=1:hypothesis_n
    [temp_L(:,:,i),hits,error_rate]=te_func_handle(adaboost_model.parameters{i},...
                                                    test_set,ones(sample_n,1),true_labels);
    temp_L(:,:,i)=temp_L(:,:,i)*adaboost_model.weights(i);
end
L=sum(temp_L,3);
hits=sum(likelihood2class(L)==true_labels);
— —— —— 

其中上面函数由于体积太大,另外还需要分别撰写两个阈值函数和一个隶属分配函数。

function model=threshold_tr(train_set,sample_weights,labels)
% 训练阈值函数

model=struct('min_error',[],'min_error_thr',[],'pos_neg',[],'dim',[]);

sample_n=size(train_set,1);
min_error=sum(sample_weights);
min_error_thr=0;
pos_neg='pos';

% for each dimension
for dim=1:size(train_set,2)
    sorted=sort(train_set(:,dim),1,'ascend');
   
    % for each interval in the specified dimension
    for i=1:(sample_n+1)
        if(i==1)
            thr=sorted(1)-0.5;
        elseif(i==sample_n+1)
            thr=sorted(sample_n)+0.5;
        else
            thr=(sorted(i-1)+sorted(i))/2;
        end
       
        ind1=train_set(:,dim)<thr;
        ind2=~ind1;
        tmp_err=sum(sample_weights((labels.*ind1)==2))+sum(sample_weights((labels.*ind2)==1));
       
        if(tmp_err<min_error)
            min_error=tmp_err;
            min_error_thr=thr;
            pos_neg='pos';
            model.dim=dim;
        end
       
        ind1=train_set(:,dim)<thr;
        ind2=~ind1;
        tmp_err=sum(sample_weights((labels.*ind1)==1))+sum(sample_weights((labels.*ind2)==2));
       
        if(tmp_err<min_error)
            min_error=tmp_err;
            min_error_thr=thr;
            pos_neg='neg';
            model.dim=dim;
        end
    end
end
model.min_error=min_error;
model.min_error_thr=min_error_thr;
model.pos_neg=pos_neg;

function [L,hits,error_rate]=threshold_te(model,test_set,sample_weights,true_labels)
% 测试阈值函数
feat=test_set(:,model.dim);
if(strcmp(model.pos_neg,'pos'))
    ind=(feat>model.min_error_thr)+1;
else
    ind=(feat<model.min_error_thr)+1;
end

hits=sum(ind==true_labels);
error_rate=sum(sample_weights(ind~=true_labels));

L=zeros(length(feat),2);

L(ind==1,1)=1;
L(ind==2,2)=1;


function classes=likelihood2class(likelihoods)
% 隶属分配函数
[sample_n,class_n] = size(likelihoods);
maxs = (likelihoods==repmat(max(likelihoods,[],2),[1,class_n]));

classes=zeros(sample_n,1);
for i=1:sample_n
    classes(i) = find(maxs(i,:),1);
end

很早就想过通过组合弱分类器来实现一个强分类器的问题。当学习到线性分类器以及著名的决策树之类分类器后,很容易联想到高中时代线性规划里面对不少区域的划分。要是能够找到一种方法,组合这些简单的直线方程,不就可以实现“山寨诸葛亮”的理想?

实际上,在Kearns和Valiant在1989年大作中指出了这种算法的可行性。而后,Freund在1990年以及他和Schapire在1994-1996年提出了boosting整个算法思路,似乎这种算法走到了实际应用的开端。然而直到AdaBoost被viola在其人脸识别系统中运用(2001Viola和Jones),这种方法才彻底开始暴火。

Adaboost实际具体解决了两个问题:
1.怎么处理训练样本?
在AdaBoost中,每个样本都被赋予一个权重。如果 某个样本没有被正确分类,它的权重就会被提高, 反之则降低。这样, AdaBoost方法将注意力更多 地放在“难分”的样本上。
2.怎么合并若分类器成为一个强分类器?
强分类器表示为若干弱分类器的线性加权和形式, 准确率越高的弱学习机权重越高。

好了。

以下参考: http://stblog.baidu-tech.com/?p=19

一、Boosting算法的发展历史

  Boosting算法是一种把若干个分类器整合为一个分类器的方法,在boosting算法产生之前,还出现过两种比较重要的将多个分类器整合为一个分类器的方法,即boostrapping方法和bagging方法。我们先简要介绍一下bootstrapping方法和bagging方法。

  1)bootstrapping方法的主要过程

  主要步骤:

  i)重复地从一个样本集合D中采样n个样本

  ii)针对每次采样的子样本集,进行统计学习,获得假设Hi

  iii)将若干个假设进行组合,形成最终的假设Hfinal

  iv)将最终的假设用于具体的分类任务

  2)bagging方法的主要过程

  主要思路:

  i)训练分类器

  从整体样本集合中,抽样n* < N个样本 针对抽样的集合训练分类器Ci

  ii)分类器进行投票,最终的结果是分类器投票的优胜结果

  但是,上述这两种方法,都只是将分类器进行简单的组合,实际上,并没有发挥出分类器组合的威力来。直到1989年,Yoav Freund与 Robert Schapire提出了一种可行的将弱分类器组合为强分类器的方法。并由此而获得了2003年的哥德尔奖(Godel price)。

  Schapire还提出了一种早期的boosting算法,其主要过程如下:

  i)从样本整体集合D中,不放回的随机抽样nn 个样本,得到集合 D1

  训练弱分类器C1

  ii)从样本整体集合D中,抽取 nn 个样本,其中合并进一半被 C1 分类错误的样本。得到样本集合 D2

  训练弱分类器C2

  iii)抽取D样本集合中,C1 和 C2 分类不一致样本,组成D3

  训练弱分类器C3

  iv)用三个分类器做投票,得到最后分类结果

  到了1995年,Freund and schapire提出了现在的adaboost算法,其主要框架可以描述为:

  i)循环迭代多次

  更新样本分布

  寻找当前分布下的最优弱分类器

  计算弱分类器误差率

  ii)聚合多次训练的弱分类器

  在下图中可以看到完整的adaboost算法:

图1.1  adaboost算法过程

  现在,boost算法有了很大的发展,出现了很多的其他boost算法,例如:logitboost算法,gentleboost算法等等。在这次报告中,我们将着重介绍adaboost算法的过程和特性。

二、Adaboost算法及分析

  从图1.1中,我们可以看到adaboost的一个详细的算法过程。Adaboost是一种比较有特点的算法,可以总结如下:

  1)每次迭代改变的是样本的分布,而不是重复采样(re weight)

  2)样本分布的改变取决于样本是否被正确分类

  总是分类正确的样本权值低

  总是分类错误的样本权值高(通常是边界附近的样本)

  3)最终的结果是弱分类器的加权组合

  权值表示该弱分类器的性能

  简单来说,Adaboost有很多优点:

  1)adaboost是一种有很高精度的分类器

  2)可以使用各种方法构建子分类器,adaboost算法提供的是框架

  3)当使用简单分类器时,计算出的结果是可以理解的。而且弱分类器构造极其简单

  4)简单,不用做特征筛选

  5)不用担心overfitting!

  总之:adaboost是简单,有效。

  下面我们举一个简单的例子来看看adaboost的实现过程:

  图中,“+”和“-”分别表示两种类别,在这个过程中,我们使用水平或者垂直的直线作为分类器,来进行分类。

  第一步:

  根据分类的正确率,得到一个新的样本分布D,一个子分类器h1

  其中划圈的样本表示被分错的。在右边的途中,比较大的“+”表示对该样本做了加权。

  第二步:

  根据分类的正确率,得到一个新的样本分布D3,一个子分类器h2

  第三步:

  得到一个子分类器h3

  整合所有子分类器:

  因此可以得到整合的结果,从结果中看,及时简单的分类器,组合起来也能获得很好的分类效果,在例子中所有的。

  Adaboost算法的某些特性是非常好的,在我们的报告中,主要介绍adaboost的两个特性。一是训练的错误率上界,随着迭代次数的增加,会逐渐下降;二是adaboost算法即使训练次数很多,也不会出现过拟合的问题。

  下面主要通过证明过程和图表来描述这两个特性:

  1)错误率上界下降的特性

  从而可以看出,随着迭代次数的增加,实际上错误率上界在下降。

  2)不会出现过拟合现象

  通常,过拟合现象指的是下图描述的这种现象,即随着模型训练误差的下降,实际上,模型的泛化误差(测试误差)在上升。横轴表示迭代的次数,纵轴表示训练误差的值。

而实际上,并没有观察到adaboost算法出现这样的情况,即当训练误差小到一定程度以后,继续训练,返回误差仍然不会增加。

  对这种现象的解释,要借助margin的概念,其中margin表示如下:

  通过引入margin的概念,我们可以观察到下图所出现的现象:

  从图上左边的子图可以看到,随着训练次数的增加,test的误差率并没有升高,同时对应着右边的子图可以看到,随着训练次数的增加,margin一直在增加。这就是说,在训练误差下降到一定程度以后,更多的训练,会增加分类器的分类margin,这个过程也能够防止测试误差的上升。

三、多分类adaboost

  在日常任务中,我们通常需要去解决多分类的问题。而前面的介绍中,adaboost算法只能适用于二分类的情况。因此,在这一小节中,我们着重介绍如何将adaboost算法调整到适合处理多分类任务的方法。

  目前有三种比较常用的将二分类adaboost方法。

  1、adaboost M1方法

  主要思路: adaboost组合的若干个弱分类器本身就是多分类的分类器。

  在训练的时候,样本权重空间的计算方法,仍然为:

  在解码的时候,选择一个最有可能的分类

  2、adaboost MH方法

  主要思路: 组合的弱分类器仍然是二分类的分类器,将分类label和分类样例组合,生成N个样本,在这个新的样本空间上训练分类器。

  可以用下图来表示其原理:

  3、对多分类输出进行二进制编码

  主要思路:对N个label进行二进制编码,例如用m位二进制数表示一个label。然后训练m个二分类分类器,在解码时生成m位的二进制数。从而对应到一个label上。

四、总结

  最后,我们可以总结下adaboost算法的一些实际可以使用的场景:

  1)用于二分类或多分类的应用场景

  2)用于做分类任务的baseline

  无脑化,简单,不会overfitting,不用调分类器

  3)用于特征选择(feature selection)

  4)Boosting框架用于对badcase的修正

  只需要增加新的分类器,不需要变动原有分类器

  由于adaboost算法是一种实现简单,应用也很简单的算法。Adaboost算法通过组合弱分类器而得到强分类器,同时具有分类错误率上界随着训练增加而稳定下降,不会过拟合等的性质,应该说是一种很适合于在各种分类场景下应用的算法。

待续。。。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值