剑指 Offer II 041. 滑动窗口的平均值
给定一个整数数据流和一个窗口大小,根据该滑动窗口的大小,计算滑动窗口里所有数字的平均值。
实现 MovingAverage 类:
MovingAverage(int size) 用窗口大小 size 初始化对象。
double next(int val) 成员函数 next 每次调用的时候都会往滑动窗口增加一个整数,请计算并返回数据流中最后 size 个值的移动平均值,即滑动窗口里所有数字的平均值。
输入: inputs = [“MovingAverage”, “next”, “next”, “next”, “next”] inputs = [[3], [1], [10], [3], [5]]
输出: [null, 1.0, 5.5, 4.66667, 6.0]解释: MovingAverage movingAverage = new MovingAverage(3);
movingAverage.next(1); // 返回 1.0 = 1 / 1
movingAverage.next(10); // 返回 5.5 = (1 + 10) / 2
movingAverage.next(3); // 返回 4.66667 = (1 + 10 + 3) / 3
movingAverage.next(5); // 返回 6.0 = (10 + 3 + 5) / 3
首先要明白题目的意思,就是有一个滑动窗口,大小固定,计算窗口内的数的平均值。
可以采用集合来解题,可以将在滑动窗口的数加入到集合里面;
而当滑动窗口滑动时,就把前面的元素删除,加入后面的元素即可。
分情况讨论,初始时list集合为空,所以就是添加元素并且计算,而当list的大小和窗口大小相等时就需要删除前面元素,加入后面元素了。
class MovingAverage {
LinkedList<Integer> list = new LinkedList<>();
int size;
double sum;
/** Initialize your data structure here. */
public MovingAverage(int size) {
this.size = size;
}
public double next(int val) {
if(list.size()<size){
sum+=val;
list.addLast(val);
return sum/list.size();
}
else{
sum = sum - list.removeFirst();
list.addLast(val);
sum+=val;
return sum/size;
}
}
}
还有一种方法就是队列啦,滑动窗口进出数字的过程与队列先进先出的特点一致,所以用队列解题。
思路与上述相似,当队列大小小于size时,添加元素,并返回相应的平均值;
当队列大小等于size时,先出队列,再将对应的val加入队列,同时sum也要做相应的变化:sum-=queue.poll();
最后返回sum/queue.size()。
一定是队列的大小,而不是size,因为当队列还没满时,队列大小不是size。
class MovingAverage {
Queue<Integer> queue;
int size;
double sum;
/** Initialize your data structure here. */
public MovingAverage(int size) {
this.size = size;
queue = new ArrayDeque<Integer>();
}
public double next(int val) {
if(queue.size()==size){
sum-=queue.poll();
}
queue.offer(val);
sum += val;
return sum/queue.size();
}
}