Description
科学家温斯顿在一张超长的白纸上写下了两行数,每一行数有N个。
但他写完后觉得看起来有点不和谐。他希望重新编排,使得每一行数中没有相同的数。
他每次可以调换同一列的两个数。
请帮他找到操作次数最少的方案。
Input
第一行一个正整数N,代表每一行数的个数。
第二第三行每行N个数,代表第一行与第二行的数值。
Output
第一行一个整数,表示最少的操作次数。数据保证合法的操作是存在的。
Sample Input
9
2 5 5 2 7 4 7 3 9
1 6 8 4 6 3 9 1 8
Sample Output
3
Hint
对于样例数据,只需调换1,3,5列即可。
Data Constraint
设字符串的长度为N。
Subtask1[30pts]:N<=500
Subtask2[30pts]:N<=5000
Subtask3[40pts]:N<=50000
数值Xi满足1<=X<=100000
Solution
可以明显得到同一个数不可能出现 3 次或以上,否则无解。
如果同一个数出现在同一侧(设其出现在 X 列和 Y 列),那么 X 列与 Y 列之中有且只有一列要调换;
如果同一个数出现在不同一侧(设其出现在 X 列和 Y 列),那么要么均不调换,要么均调换。
我们把每一列看作一个点,这样的关系用边连起来,那么连通块内相互影响,而连通块之间
是相互独立的。所以分别处理每一个连通块:随机确定一列换不换,那么连通块内其余的状态都会被确定。
我们只需选择操作数少的即可。
Code
#include<cstdio>
using namespace std;
const int N=50001;
int n,ans,sum,tot;
int first[N],next[N<<1],en[N<<1],w[N<<1];
int a[N<<1],b[N<<1],f[N];
bool bz[N],bz1[N];
inline int read()
{
int X=0,w=1; char ch=0;
while(ch<'0' || ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0' && ch<='9') X=(X<<3)+(X<<1)+ch-'0',ch=getchar();
return X*w;
}
inline void insert(int x,int y,int z)
{
next[++tot]=first[x];
first[x]=tot;
en[tot]=y;
w[tot]=z;
}
inline void dfs(int x)
{
sum+=f[x];
bz[x]=true;
for(int i=first[x];i;i=next[i])
if(!bz[en[i]])
{
f[en[i]]=(f[x]+w[i])&1;
dfs(en[i]);
}
f[x]=0;
}
inline void dfs1(int x)
{
sum+=f[x];
bz1[x]=true;
for(int i=first[x];i;i=next[i])
if(!bz1[en[i]])
{
f[en[i]]=(f[x]+w[i])&1;
dfs1(en[i]);
}
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
int x=read();
if(!a[x]) a[x]=i; else
{
insert(i,a[x],1);
insert(a[x],i,1);
}
}
for(int i=1;i<=n;i++)
{
int x=read();
if(a[x])
{
insert(i,a[x],0);
insert(a[x],i,0);
}else
if(!b[x]) b[x]=i; else
{
insert(i,b[x],1);
insert(b[x],i,1);
}
}
for(int i=1;i<=n;i++)
if(!bz[i])
{
sum=f[i]=0;
dfs(i);
int k=sum;
sum=0,f[i]=1;
dfs1(i);
if(k<sum) sum=k;
ans+=sum;
}
printf("%d",ans);
return 0;
}