Description
科学家温斯顿从数据库中找到了一串相当长的字符串。
他正试图用一个模板串来重构这个字符串。
他可以将模板串复制多份,通过合适的方式拼接起来,使得最终的串与原串一致。
如果两个模板串互相覆盖,那么覆盖的部分必须完全一致。
原串的所有位置必须被覆盖到。
显然,原串本身就是一个模板串。但为了节省成本,他想找到长度最短的模板串。
分析
首先我们知道模板串一定是字符串的前缀,由此我们想到的kmp的next[]数组。
next[i]=k的意义是原串中[1..k]和[i-k+1..i]相等。
我们设
fi
表示将[1..i]都用模板串覆盖了的模板串的长度。
显然,
fi可以等于i
因为模板串就是自己。
第二种情况,
fi=fnexti
也就是说
[i−nexti+1..i]
的覆盖方法与
1..nexti
相同。
所以如果存在
fj=fnexti(i−nexti≤j)
那么
fi=fnexti
code
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <math.h>
#define N 500003
using namespace std;
char s[N],c;
int len,next[N],f[N],h[N];
void make(char* t,int len)
{
memset(next,0,sizeof(next));
int j=0;
for(int i=2;i<=len;i++)
{
while(j>0 && t[j+1]!=t[i])j=next[j];
if(t[i]==t[j+1])j++;
next[i]=j;
}
}
int main()
{
c=getchar();
while('a'>c && c>'z')c=getchar();
s[1]=c;len=1;
while('a'<=s[len] && s[len]<='z')s[++len]=getchar();
len--;
make(s,len);
for(int i=1;i<=len;i++)
{
f[i]=i;
if(h[f[next[i]]]>=i-next[i])f[i]=f[next[i]];
h[f[i]]=i;
}
printf("%d\n",f[len]);
}