JZOJ 5622. 【NOI2018模拟4.2】table

12 篇文章 0 订阅
6 篇文章 0 订阅

Description

Description

Input

Input

Output

Output

Sample Input

输入样例一

5 4 1 1 3 5
1 0 0 0
5 2
3 1
1 2
2 3
4 3

输入样例二

10 5 233 2333 6 4
9 3 1 0 10
1 5
10 2
5 3
8 1

Sample Output

输出样例一

2
1
998244351
1
0

输出样例二

110343631
118211750
770559638
488601

Data Constraint

Data Constraint

Solution

  • 首先,知道了第 p 行,我们就可以向上向下推出其它的数。

  • 接着我们可以找找规律,考虑用第 p 行的数表示出其它数(一个N元多项式)。

  • 又可以发现它们的形式就像二项式展开一样: a 的几次方乘b 的几次方乘一个系数。

  • 而系数就是杨辉三角中的组合数系数,向上向下推都同理。

  • 那么 O(M) 预处理出阶乘和逆元,在每次询问时 O(N) 计算多项式的值即可。

  • 总时间复杂度 O(M+NQ)

Code

#include<cstdio>
#include<cctype>
using namespace std;
typedef long long LL;
const int N=1e5+5,M=1e7+5,mo=998244353;
int f[M+N],g[M+N],c[N];
inline int read()
{
    int X=0,w=0; char ch=0;
    while(!isdigit(ch)) w|=ch=='-',ch=getchar();
    while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
    return w?-X:X;
}
inline int min(int x,int y)
{
    return x<y?x:y;
}
inline int ksm(int x,int y)
{
    int s=1;
    while(y)
    {
        if(y&1) s=(LL)s*x%mo;
        x=(LL)x*x%mo;
        y>>=1;
    }
    return s;
}
inline int C(int x,int y)
{
    return (LL)f[x]*g[y]%mo*g[x-y]%mo;
}
int main()
{
    int m=read(),n=read(),a=read(),b=read(),p=read(),q=read();
    for(int i=1;i<=n;i++) c[i]=read();
    f[0]=g[0]=1;
    for(int i=1;i<=m+n;i++) f[i]=(LL)f[i-1]*i%mo;
    g[m+n]=ksm(f[m+n],mo-2);
    for(int i=m+n-1;i;i--) g[i]=(LL)g[i+1]*(i+1)%mo;
    int aa=ksm(a,mo-2);
    while(q--)
    {
        int x=read(),y=read();
        if(x==p) printf("%d\n",c[y]); else
        if(x>p)
        {
            int num=x-p,a1=ksm(a,num),b1=1;
            int cnt=min(y,num+1),sum=0;
            for(int i=0,yy=y;i<=cnt;i++,yy--)
            {
                sum=(sum+(LL)C(num,i)*a1%mo*b1%mo*c[yy]%mo)%mo;
                a1=(LL)a1*aa%mo;
                b1=(LL)b1*b%mo;
            }
            printf("%d\n",sum);
        }else
        {
            int num=p-x,a1=ksm(aa,num),b1=1;
            int sum=0,ff=1;
            for(int i=0,yy=y;i<y;i++,yy--)
            {
                sum=(sum+(LL)C(num+i-1,i)*a1%mo*b1%mo*c[yy]%mo*ff%mo)%mo;
                a1=(LL)a1*aa%mo;
                b1=(LL)b1*b%mo;
                ff=mo-ff;
            }
            printf("%d\n",sum);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值