Description
Input
Output
Sample Input
输入样例一
5 4 1 1 3 5
1 0 0 0
5 2
3 1
1 2
2 3
4 3
输入样例二
10 5 233 2333 6 4
9 3 1 0 10
1 5
10 2
5 3
8 1
Sample Output
输出样例一
2
1
998244351
1
0
输出样例二
110343631
118211750
770559638
488601
Data Constraint
Solution
首先,知道了第 p 行,我们就可以向上向下推出其它的数。
接着我们可以找找规律,考虑用第
p 行的数表示出其它数(一个N元多项式)。又可以发现它们的形式就像二项式展开一样: a 的几次方乘
b 的几次方乘一个系数。而系数就是杨辉三角中的组合数系数,向上向下推都同理。
那么 O(M) 预处理出阶乘和逆元,在每次询问时 O(N) 计算多项式的值即可。
总时间复杂度 O(M+NQ) 。
Code
#include<cstdio>
#include<cctype>
using namespace std;
typedef long long LL;
const int N=1e5+5,M=1e7+5,mo=998244353;
int f[M+N],g[M+N],c[N];
inline int read()
{
int X=0,w=0; char ch=0;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
inline int min(int x,int y)
{
return x<y?x:y;
}
inline int ksm(int x,int y)
{
int s=1;
while(y)
{
if(y&1) s=(LL)s*x%mo;
x=(LL)x*x%mo;
y>>=1;
}
return s;
}
inline int C(int x,int y)
{
return (LL)f[x]*g[y]%mo*g[x-y]%mo;
}
int main()
{
int m=read(),n=read(),a=read(),b=read(),p=read(),q=read();
for(int i=1;i<=n;i++) c[i]=read();
f[0]=g[0]=1;
for(int i=1;i<=m+n;i++) f[i]=(LL)f[i-1]*i%mo;
g[m+n]=ksm(f[m+n],mo-2);
for(int i=m+n-1;i;i--) g[i]=(LL)g[i+1]*(i+1)%mo;
int aa=ksm(a,mo-2);
while(q--)
{
int x=read(),y=read();
if(x==p) printf("%d\n",c[y]); else
if(x>p)
{
int num=x-p,a1=ksm(a,num),b1=1;
int cnt=min(y,num+1),sum=0;
for(int i=0,yy=y;i<=cnt;i++,yy--)
{
sum=(sum+(LL)C(num,i)*a1%mo*b1%mo*c[yy]%mo)%mo;
a1=(LL)a1*aa%mo;
b1=(LL)b1*b%mo;
}
printf("%d\n",sum);
}else
{
int num=p-x,a1=ksm(aa,num),b1=1;
int sum=0,ff=1;
for(int i=0,yy=y;i<y;i++,yy--)
{
sum=(sum+(LL)C(num+i-1,i)*a1%mo*b1%mo*c[yy]%mo*ff%mo)%mo;
a1=(LL)a1*aa%mo;
b1=(LL)b1*b%mo;
ff=mo-ff;
}
printf("%d\n",sum);
}
}
return 0;
}