Description
Input
Output
Sample Input
5 7 0
1 2 3 4 5
1 2
2 3
2 4
1 5
1 2 4 5
2 2 4 5
3 2 4 5
4 2 4 5
5 2 4 5
5 1 2
100 3 1 2 5
Sample Output
0
0
1
0
0
3
95
Data Constraint
Solution
挺不错的一题!
首先对于一个 k k 个点构成的连通块,就是那 个点的lca,之后延伸出来许多条链。
那么我们先找到那个lca,再对于每一条链都找出最接近 r r 的值。
这怎么办呢?建可持久化的权值线段树(主席树)就可以了,查询 比它大最小的 和 比它小的最大的 两个值。
我的方法是树链剖分后建树,在每条重链中查询,但还有更好的方法是每个点从它的父亲处继承。
时间复杂度 。
Code
#include<cstdio>
#include<cctype>
using namespace std;
const int N=1e5+5,inf=1e9;
struct data
{
int v,l,r;
}f[N*32];
int tot,last,qx,qy,pos;
int first[N],nex[N<<1],en[N<<1];
int fa[N],dep[N],son[N],size[N];
int top[N],pre[N],tree[N];
int a[N],p[N],rt[N];
inline int read()
{
int X=0,w=0; char ch=0;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
return w?-X:X;
}
void write(int x)
{
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline void insert(int x,int y)
{
nex[++tot]=first[x];
first[x]=tot;
en[tot]=y;
}
void dfs(int x)
{
dep[x]=dep[fa[x]]+1;
size[x]=1;
for(int i=first[x];i;i=nex[i])
if(en[i]^fa[x])
{
fa[en[i]]=x;
dfs(en[i]);
size[x]+=size[en[i]];
if(!son[x] || son[en[i]]>size[son[x]]) son[x]=en[i];
}
}
void dfs1(int x,int y)
{
top[pre[tree[x]=++tot]=x]=y;
if(!son[x]) return;
dfs1(son[x],y);
for(int i=first[x];i;i=nex[i])
if(en[i]^fa[x] && en[i]^son[x]) dfs1(en[i],en[i]);
}
int lca(int x,int y)
{
while(top[x]^top[y])
if(dep[top[x]]>dep[top[y]]) x=fa[top[x]]; else y=fa[top[y]];
return dep[x]<dep[y]?x:y;
}
inline int abs(int x)
{
return x<0?-x:x;
}
inline int min(int x,int y)
{
return x<y?x:y;
}
void change(int ff,int &v,int l,int r)
{
f[v=++tot]=f[ff];
f[v].v++;
if(l==r) return;
int mid=l+r>>1;
if(pos<=mid) change(f[ff].l,f[v].l,l,mid); else change(f[ff].r,f[v].r,mid+1,r);
}
int down(int ff,int v,int l,int r)
{
if(!(f[v].v-f[ff].v)) return 0;
if(l==r) return l;
int mid=l+r>>1;
if(qx<=mid) return down(f[ff].l,f[v].l,l,mid);
int s=down(f[ff].r,f[v].r,mid+1,r);
return s?s:down(f[ff].l,f[v].l,l,mid);
}
int up(int ff,int v,int l,int r)
{
if(!(f[v].v-f[ff].v)) return 0;
if(l==r) return l;
int mid=l+r>>1;
if(qx>mid) return up(f[ff].r,f[v].r,mid+1,r);
int s=up(f[ff].l,f[v].l,l,mid);
return s?s:up(f[ff].r,f[v].r,mid+1,r);
}
int main()
{
freopen("e.in","r",stdin);
freopen("e.out","w",stdout);
int n=read(),q=read(),ty=read();
if(!q) return 0;
for(int i=1;i<=n;i++) a[i]=read();
for(int i=1;i<n;i++)
{
int x=read(),y=read();
insert(x,y);
insert(y,x);
}
tot=0;
dfs(1);
dfs1(1,1);
tot=0;
for(int i=1;i<=n;i++) pos=a[pre[i]],change(rt[i-1],rt[i],1,inf);
while(q--)
{
int r=read(),k=read();
for(int i=1;i<=k;i++) p[i]=(read()-1+last*ty)%n+1;
pos=p[1];
for(int i=2;i<=k && pos>1;i++) pos=lca(pos,p[i]);
last=abs(a[pos]-r);
qx=r;
for(int i=1;i<=k && last;i++)
{
int x=p[i];
while(top[x]^top[pos])
{
int num=down(rt[tree[top[x]]-1],rt[tree[x]],1,inf);
if(num) last=min(last,abs(num-r));
num=up(rt[tree[top[x]]-1],rt[tree[x]],1,inf);
if(num) last=min(last,abs(num-r));
x=fa[top[x]];
}
int num=down(rt[tree[pos]-1],rt[tree[x]],1,inf);
if(num) last=min(last,abs(num-r));
num=up(rt[tree[pos]-1],rt[tree[x]],1,inf);
if(num) last=min(last,abs(num-r));
}
write(last),putchar('\n');
}
return 0;
}