在一棵树上,我们要求点 (u,v) 之间路径的第 kkk 大数。
对于点 $i$ ,建立 $i$ 到根节点的一棵前缀主席树。
简单容斥后不难得出结果为 $sumv[u]+sumv[v]−sumv[lca]−sumv[fa[lca]]$
其他的和主席树是一样的。
Code:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<iostream>
using namespace std;
void SetIO(string a){
string in = a + ".in";
freopen(in.c_str(),"r",stdin);
}
void debug(){
cout << 233 << endl;
}
const int maxn = 100000 + 5;
int n, m;
int val[maxn];
int Sorted[maxn];
inline void Disperse(){
sort(Sorted + 1, Sorted + 1 + n);
for(int i = 1;i <= n; ++i)
val[i] = lower_bound(Sorted + 1, Sorted + 1 + n, val[i]) - Sorted;
}
int head[maxn << 1], to[maxn << 1], nex[maxn << 1], edges;
inline void add_edge(int u, int v){
nex[++edges] = head[u];
head[u] = edges;
to[edges] = v;
}
inline void Read(){
scanf("%d%d",&n, &m);
for(int i = 1;i <= n; ++i){
scanf("%d",&val[i]), Sorted[i] = val[i];
}
for(int i = 1;i < n; ++i){
int a, b;
scanf("%d%d",&a,&b);
add_edge(a,b);
add_edge(b,a);
}
}
const int Tree_const = 50;
int root[maxn];
struct Chair_Tree{
int cnt_node;
int sumv[maxn * Tree_const], lson[maxn * Tree_const], rson[maxn * Tree_const];
void build(int l, int r, int &o){
if(l > r) return ;
o = ++ cnt_node;
if(l == r) return ;
int mid = (l + r) >> 1;
build(l, mid, lson[o]);
build(mid + 1, r, rson[o]);
}
int insert(int l, int r, int o, int pos){
int oo = ++cnt_node;
lson[oo] = lson[o];
rson[oo] = rson[o];
sumv[oo] = sumv[o] + 1;
if(l == r) return oo;
int mid = (l + r) >> 1;
if(pos <= mid) lson[oo] = insert(l, mid, lson[o], pos);
else rson[oo] = insert(mid + 1, r, rson[o], pos);
return oo;
}
int query(int l, int r, int u, int v, int lca, int lca_fa, int k){
if(l == r) return l;
int lsum = sumv[lson[u]] + sumv[lson[v]] - sumv[lson[lca]] - sumv[lson[lca_fa]];
int mid = (l + r) >> 1;
if(k <= lsum) return query(l, mid, lson[u], lson[v], lson[lca], lson[lca_fa], k);
else return query(mid + 1, r, rson[u], rson[v], rson[lca], rson[lca_fa], k - lsum);
}
}Tree;
const int logn = 20;
int f[23][maxn];
int dep[maxn];
void dfs(int u, int fa, int depth){
root[u] = Tree.insert(1, n, root[fa], val[u]);
dep[u] = depth;
f[0][u] = fa;
for(int v = head[u]; v ; v = nex[v]){
if(to[v] == fa) continue;
dfs(to[v], u, depth + 1);
}
}
inline void get_ancester(){
for(int i = 1;i <= logn; ++i){
for(int j = 1;j <= n; ++j)
f[i][j] = f[i - 1][f[i - 1][j]];
}
}
inline int get_lca(int a, int b){
if(dep[a] > dep[b]) swap(a,b);
if(dep[a] != dep[b]){
for(int i = logn;i >= 0;--i){
if(dep[f[i][b]] >= dep[a]) b = f[i][b];
}
}
if(a == b) return a;
for(int i = logn;i>=0;--i)
if(f[i][a] != f[i][b]) a = f[i][a], b = f[i][b];
return f[0][a];
}
inline void Build(){
Tree.build(1, n, root[0]);
dfs(1, 0, 1);
get_ancester();
}
inline void Init(){
Read();
Disperse();
Build();
}
inline void Work(){
int lastans = 0;
while(m--){
int u, v, k;
scanf("%d%d%d",&u, &v, &k);
u ^= lastans;
int lca = get_lca(u, v);
lastans = Tree.query(1, n, root[u], root[v], root[lca], root[f[0][lca]], k);
lastans = Sorted[lastans];
printf("%d\n", lastans);
}
}
int main(){
SetIO("input");
Init();
Work();
return 0;
}