一、技术论证
1 离散傅里叶变换DFT
离散傅里叶变换是傅里叶变换在时域和频域上都呈现离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。
对于二维图像求傅里叶变换,需要用到二维离散傅里叶变换,设尺寸为M*N的二维离散图像函数为:
2 快速傅里叶变换FFT
快速傅里叶变换FFT并不是与傅里叶变换DFT不同的另一种变换,快速傅里叶变换是减少DFT运算次数的一种改进算法。它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。常用的FFT是以2为基数的,其长度N=2l。它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。
3 傅里叶谱的中心化处理
在数字图像处理中,常常需要将的原点移到
频域的中心以便清楚地观察谱的情况。要做到这一点只需令:
,则有:
因此若要将图像谱的原点从(0,0)移到图像的中心点(N/2,N/2)处,只要将乘上
因子,然后进行傅立叶变换即可。
4 频率域滤波步骤