仿射变换

仿射变换
  1. 使用OpenCV函数 warpAffine 来实现一些简单的重映射.
  2. 使用OpenCV函数 getRotationMatrix2D 来获得一个 2 \times 3 旋转矩阵

什么是仿射变换?

  1. 一个任意的仿射变换都能表示为 乘以一个矩阵 (线性变换) 接着再 加上一个向量 (平移).

  2. 综上所述, 我们能够用仿射变换来表示:

    1. 旋转 (线性变换)
    2. 平移 (向量加)
    3. 缩放操作 (线性变换)

    你现在可以知道, 事实上, 仿射变换代表的是两幅图之间的 关系 .

  3. 我们通常使用 2 \times 3 矩阵来表示仿射变换.

    A = \begin{bmatrix}     a_{00} & a_{01} \\     a_{10} & a_{11}     \end{bmatrix}_{2 \times 2} B = \begin{bmatrix}     b_{00} \\     b_{10}     \end{bmatrix}_{2 \times 1} M = \begin{bmatrix}     A & B     \end{bmatrix} =\begin{bmatrix}     a_{00} & a_{01} & b_{00} \\     a_{10} & a_{11} & b_{10}\end{bmatrix}_{2 \times 3}

    考虑到我们要使用矩阵 A 和 B 对二维向量 X = \begin{bmatrix}x \\ y\end{bmatrix} 做变换, 所以也能表示为下列形式:

    T = A \cdot \begin{bmatrix}x \\ y\end{bmatrix} + B or T = M \cdot  [x, y, 1]^{T}

    T =  \begin{bmatrix}    a_{00}x + a_{01}y + b_{00} \\    a_{10}x + a_{11}y + b_{10}    \end{bmatrix}




怎样才能求得一个仿射变换?

  1. 好问题. 我们在上文有提到过仿射变换基本表示的就是两幅图片之间的 联系 . 关于这种联系的信息大致可从以下两种场景获得:

    1. 我们已知 X 和 T 而且我们知道他们是有联系的. 接下来我们的工作就是求出矩阵 M
    2. 我们已知 M and X. 要想求得 T. 我们只要应用算式 T = M \cdot X 即可. 对于这种联系的信息可以用矩阵 M 清晰的表达 (即给出明确的2×3矩阵) 或者也可以用两幅图片点之间几何关系来表达.
  2. 让我们形象地说明一下. 因为矩阵 M 联系着两幅图片, 我们以其表示两图中各三点直接的联系为例. 见下图:

    Theory of Warp Affine

    点1, 2 和 3 (在图一中形成一个三角形) 与图二中三个点一一映射, 仍然形成三角形, 但形状已经大大改变. 如果我们能通过这样两组三点求出仿射变换 (你能选择自己喜欢的点), 接下来我们就能把仿射变换应用到图像中所有的点.

函数:
(1)C++:   void  warpAffine ( InputArray  src , OutputArray  dst , InputArray  M , Size  dsize , int  flags =INTER_LINEAR, int  borderMode =BORDER_CONSTANT, const Scalar&  borderValue =Scalar() )

The function warpAffine transforms the source image using the specified matrix:

\texttt{dst} (x,y) =  \texttt{src} ( \texttt{M} _{11} x +  \texttt{M} _{12} y +  \texttt{M} _{13}, \texttt{M} _{21} x +  \texttt{M} _{22} y +  \texttt{M} _{23})


(2)C++: Mat getRotationMatrix2D(Point2f center, double angle, double scale)
计算二维旋转变换矩阵

The function calculates the following matrix:

\begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot \texttt{center.x} -  \beta \cdot \texttt{center.y} \\ - \beta &  \alpha &  \beta \cdot \texttt{center.x} + (1- \alpha )  \cdot \texttt{center.y} \end{bmatrix}

where

\begin{array}{l} \alpha =  \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta =  \texttt{scale} \cdot \sin \texttt{angle} \end{array}


官方例程
  • 加载一幅图片
  • 对这幅图片应用仿射变换. 这个变换是从源图像和目标图像的两组三点之间的联系获得的. 这一步我们使用函数 warpAffine 来实现.
  • 仿射变换结束后再对图像应用旋转. 这里的旋转绕图像中点
  • 等待用户退出程序
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace cv;
using namespace std;

/// 全局变量
char* source_window = "Source image";
char* warp_window = "Warp";
char* warp_rotate_window = "Warp + Rotate";

/** @function main */
 int main( int argc, char** argv )
 {
   Point2f srcTri[3];
   Point2f dstTri[3];

   Mat rot_mat( 2, 3, CV_32FC1 );
   Mat warp_mat( 2, 3, CV_32FC1 );
   Mat src, warp_dst, warp_rotate_dst;

   /// 加载源图像
   //src = imread( argv[1], 1 );
     src = imread("E:\\abc.jpg", 1 );
   /// 设置目标图像的大小和类型与源图像一致
   warp_dst = Mat::zeros( src.rows, src.cols, src.type() );

   /// 设置源图像和目标图像上的三组点以计算仿射变换
   srcTri[0] = Point2f( 0,0 );
   srcTri[1] = Point2f( src.cols - 1, 0 );
   srcTri[2] = Point2f( 0, src.rows - 1 );

   dstTri[0] = Point2f( src.cols*0.0, src.rows*0.33 );
   dstTri[1] = Point2f( src.cols*0.85, src.rows*0.25 );
   dstTri[2] = Point2f( src.cols*0.15, src.rows*0.7 );

   /// 求得仿射变换
   warp_mat = getAffineTransform( srcTri, dstTri );

   /// 对源图像应用上面求得的仿射变换
   warpAffine( src, warp_dst, warp_mat, warp_dst.size() );

   /** 对图像扭曲后再旋转 */

   /// 计算绕图像中点顺时针旋转50度缩放因子为0.6的旋转矩阵
   Point center = Point( warp_dst.cols/2, warp_dst.rows/2 );
   double angle = -50.0;
   double scale = 0.6;

   /// 通过上面的旋转细节信息求得旋转矩阵
   rot_mat = getRotationMatrix2D( center, angle, scale );

   /// 旋转已扭曲图像
   warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() );

   /// 显示结果
   namedWindow( source_window, CV_WINDOW_AUTOSIZE );
   imshow( source_window, src );

   namedWindow( warp_window, CV_WINDOW_AUTOSIZE );
   imshow( warp_window, warp_dst );

   namedWindow( warp_rotate_window, CV_WINDOW_AUTOSIZE );
   imshow( warp_rotate_window, warp_rotate_dst );

   /// 等待用户按任意按键退出程序
   waitKey(0);

   return 0;
  }
运行结果:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值