Java中的AVL树

一.二叉搜索树回顾

1.二叉搜索树的概念

在这里插入图片描述

二叉搜索树又称二叉排序树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有结点的值都小于根结点的值
  • 若它的右子树不为空,则右子树上所有结点的值都大于根结点的值
  • 它的左右子树也分别为二叉搜索树

2.性质

  • 二叉树中最左侧的结点是树中最小的结点,最右侧的结点一定是树中最大的结点
  • 采用中序遍历遍历二叉搜索树,可以得到一个有序的序列

3.查找

在这里插入图片描述

4.二叉树查询性能分析

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多
但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树
在这里插入图片描述
最优情况下,二叉搜索树为完全二叉树,其平均比较次数为: l o g 2 N log_2 N log2N
最差情况下,二叉搜索树退化为单支树,其平均比较次数为: N 2 \frac{N}{2} 2N

二.AVL树

1.AVL树的概念

目的:二叉搜索树数据有序或接近有序二叉搜索将退化成单支树的情况,此时查找元素相当于在顺序表中搜索与元素,效率低下为了解决这一问题,引入了AVL树
一颗AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1,0,1)
    在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。

2.AVL树节点的定义

class AVLTreeNode{
	public AVLTreeNode(int val){
	this.val = val;
	} 
	public AVLTreeNode left = null; // 节点的左孩子
	public AVLTreeNode right = null; // 节点的右孩子
	public AVLTreeNode parent = null; // 节点的双亲
	public int val = 0;
	public int bf = 0; // 当前节点的平衡因子
}

3.AVL树的插入

在这里插入图片描述

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
boolean insert(int val){
/* 1. 先按照二叉搜索树的规则将节点插入到AVL树中
2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
pCur插入后,pParent的平衡因子一定需要调整,在插入之前pParent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功
2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理
*/
// cur插入后,parent的平衡因子一定遭到破坏,必须对parent的平衡因子进行调整
	while(null != parent){
	// 更新双亲节点的平衡因子
	if(cur == parent.left)
		parent.bf--;
	else
		parent.bf++;
	if(parent.bf == 0)
		break;
	else if(parent.bf == -1 || parent.bf == 1) {
		cur = parent;
		parent = cur.parent;
	} else {
		// parent节点的平衡因子为2,违反了AVL树的性质
		// 此时需要对以parent为根的二叉树进行旋转处理
		if(2 == parent.bf) {
		// parent的平衡因子为2,说明parent的右子树比较高,最终需要左旋
		// ......
		} else{
		// parent的平衡因子为2,说明parent的右子树比较高,最终需要左旋
		// ......
		} 
		// 旋转完成之后,以parent为根的树已经和插入之前的高度相同,不会再对上层树的平衡性造成影响
		break;
		}
	} 
return true;
}

4.旋转过程详解:

右旋
在这里插入图片描述
在这里插入图片描述
左旋:
在这里插入图片描述

5.AVL树的旋转

(1)新节点插入较高左子树的左侧—左左失衡:对失衡结点右旋
在这里插入图片描述
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程
中,有以下几种情况需要考虑:

  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树

如果是根节点,旋转完成后,要更新根节点
如果是子树,可能是某个节点的左子树,也可能是右子树

private void rotateLeft(AVLTreeNode parent){
	// 注意这几个特殊孩子节点的命名
	// subR为双亲的右孩子
	AVLTreeNode subR = parent.right;
	// 为subR的左孩子
	AVLTreeNode subRL = subR.left;
	// 节点的孩子域的指向只需要改变两个:结合图解
	// 1. 旋转完成后subRL成为parent的右孩子
	parent.right = subRL;
	if(null != subRL)
		subRL.parent = parent;
	// 2. 旋转完成之后,parent成为subR的左孩子
	subR.left = parent;
	// 更新parent和subR的双亲
	AVLTreeNode pparent = parent.parent;
	parent.parent = subR;
	subR.parent = pparent;
	// 更新原parent的上层
	// 1. 旋转前,parent可能是根节点
	// 2. 新节点插入较高右子树的右侧---右右:左单旋左单旋的实现,学生们可以参考右单旋的实现。
	//3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
	// 2. 旋转前,parent可能是一棵子树,既然是子树,那parent可能是某个节点的左子树也可能是右子树
	if(null == pparent)
		root = subR;
	else{
		if(pparent.left == parent)
			pparent.left = subR;
		else
			pparent.right = subR;
	} 
	//旋转完成后,parent和subR节点的平衡因子已经是0
	parent.bf = subR.bf = 0;
}

(2)新节点插入较高右子树的右侧—右右失衡:对失衡结点右旋
在这里插入图片描述
(3) 新节点插入较高左子树的右侧—左右失衡,对失衡结点的左孩子左旋,再对失衡结点右旋
在这里插入图片描述

// 先左单旋再右单旋
// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
private void rotateLR(AVLTreeNode parent){
	AVLTreeNode subL = parent.left;
	AVLTreeNode subLR = subL.right;
	// 旋转之前,保存subLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
	int bf = subLR.bf;
	rotateLeft(parent.left);
	rotateRight(parent);
	if(1 == bf)
		subL.bf = -1;
	else if(-1 == bf)
		parent.bf = 1;
}

(4)新节点插入较高右子树的左侧—右左失衡,对失衡结点的右孩子右旋,再对失衡结点左旋
在这里插入图片描述
总结:
新节点插入后,假设以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
    当pSubR的平衡因子为1时,执行左单旋
    当pSubR的平衡因子为-1时,执行右左双旋
  2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
    当pSubL的平衡因子为-1是,执行右单旋
    当pSubL的平衡因子为1时,执行左右双旋
    即:pParent与其较高子树节点的平衡因子时同号时单旋转,异号时双旋转。
    旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新

6.性能分析

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
AVL树是一种自平衡的二叉搜索树,它的升序遍历可以通过序遍历来实现。下面是Java实现AVL树升序遍历的示例代码: ```java // AVL树节点定义 class Node { int key; int height; Node left; Node right; Node(int key) { this.key = key; this.height = 1; } } // AVL树类定义 class AVLTree { Node root; // 获取节点的高度 int getHeight(Node node) { if (node == null) { return 0; } return node.height; } // 更新节点的高度 void updateHeight(Node node) { node.height = Math.max(getHeight(node.left), getHeight(node.right)) + 1; } // 获取节点的平衡因子 int getBalanceFactor(Node node) { if (node == null) { return 0; } return getHeight(node.left) - getHeight(node.right); } // 右旋操作 Node rotateRight(Node y) { Node x = y.left; Node T2 = x.right; x.right = y; y.left = T2; updateHeight(y); updateHeight(x); return x; } // 左旋操作 Node rotateLeft(Node x) { Node y = x.right; Node T2 = y.left; y.left = x; x.right = T2; updateHeight(x); updateHeight(y); return y; } // 插入节点 Node insertNode(Node node, int key) { if (node == null) { return new Node(key); } if (key < node.key) { node.left = insertNode(node.left, key); } else if (key > node.key) { node.right = insertNode(node.right, key); } else { return node; // 不允许插入重复的节点 } updateHeight(node); int balanceFactor = getBalanceFactor(node); // 左旋操作 if (balanceFactor > 1 && key < node.left.key) { return rotateRight(node); } // 右旋操作 if (balanceFactor < -1 && key > node.right.key) { return rotateLeft(node); } // 左右旋操作 if (balanceFactor > 1 && key > node.left.key) { node.left = rotateLeft(node.left); return rotateRight(node); } // 右左旋操作 if (balanceFactor < -1 && key < node.right.key) { node.right = rotateRight(node.right); return rotateLeft(node); } return node; } // 序遍历 void inorderTraversal(Node node) { if (node != null) { inorderTraversal(node.left); System.out.print(node.key + " "); inorderTraversal(node.right); } } } // 测试代码 public class Main { public static void main(String[] args) { AVLTree tree = new AVLTree(); tree.root = tree.insertNode(tree.root, 10); tree.root = tree.insertNode(tree.root, 20); tree.root = tree.insertNode(tree.root, 30); tree.root = tree.insertNode(tree.root, 40); tree.root = tree.insertNode(tree.root, 50); tree.root = tree.insertNode(tree.root, 25); System.out.println("AVL树的升序遍历结果:"); tree.inorderTraversal(tree.root); } } ``` 运行以上代码,输出结果为:10 20 25 30 40 50,即AVL树的升序遍历结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值