1.实现一个简单的布隆过滤器。
如果想要判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表,树等等数据结构都是这种思路.
但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢(O(n),O(logn))。不过世界上还有一种叫作散列表(又叫哈希表,Hash
table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit
array)中的一个点。这样一来,我们只要看看这个点是不是1就可以知道集合中有没有它了。这就是布隆过滤器的基本思想。
优点
相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外,
Hash函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。
布隆过滤器可以表示全集,其它任何数据结构都不能; k和m相同,使用同一组Hash函数的两个布隆过滤器的交并差运算可以使用位操作进行。
布隆过滤器
缺点
但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。
另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1,
这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面.
这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。 在降低误算率方面,有不少工作,使得出现了很多布隆过滤器的变种。
代码实现:
#include<iostream>
#include"BitSet.h"
using namespace std;
//布隆过滤器
//实现思路: 位图+hash
//hash 确定位置进行定位
template<class K>
struct _HashFunc1
{
size_t BKDRHash(const char *str)
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = hash * 131 + ch; // 也可以乘以31、131、1313、13131、131313..
}
return hash;
}
size_t operator()(const string &s)
{
return BKDRHash(s.c_str());
}
};
template<class K>
struct _HashFunc2
{
size_t SDBMHash(const char *str)
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = 65599 * hash + ch;
//hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;
}
return hash;
}
size_t operator()(const string &s)
{
return SDBMHash(s.c_str());
}
};
template<class K>
struct _HashFunc3
{
size_t RSHash(const char *str)
{
if (!*str)
return 0;
register size_t hash = 1315423911;
while (size_t ch = (size_t)*str++)
{
hash ^= ((hash << 5) + ch + (hash >> 2));
}
return hash;
}
size_t operator()(const string &s)
{
return RSHash(s.c_str());
}
};
template<class K>
struct _HashFunc4
{
size_t RSHash(const char *str)
{
register size_t hash = 0;
size_t magic = 63689;
while (size_t ch = (size_t)*str++)
{
hash = hash * magic + ch;
magic *= 378551;
}
return hash;
}
size_t operator()(const string&s)
{
return RSHash(s.c_str());
}
};
template<class K>
struct _HashFunc5
{
size_t RSHash(const char *str)
{
register size_t hash = 0;
size_t ch;
for (long i = 0; ch = (size_t)*str++; i++)
{
if ((i & 1) == 0)
{
hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
}
else
{
hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
}
}
return hash;
}
size_t operator()(const string &s)
{
return RSHash(s.c_str());
}
};
template<class K=string,
class HashFunc1=_HashFunc1<K>,
class HashFunc2=_HashFunc2<K>,
class HashFunc3=_HashFunc3<K>,
class HashFunc4=_HashFunc4<K>,
class HashFunc5 =_HashFunc5<K >>
class BloomFilter
{
public:
BloomFilter(size_t size)
{
_capacity = _GetNextPrime(size);
_bitmap.Resize(_capacity);
}
void Set(const K &key)
{
size_t index1 = HashFunc1()(key);
size_t index2 = HashFunc2()(key);
size_t index3 = HashFunc3()(key);
size_t index4 = HashFunc4()(key);
size_t index5 = HashFunc5()(key);
_bitmap.Set(index1%_capacity);
_bitmap.Set(index2%_capacity);
_bitmap.Set(index3%_capacity);
_bitmap.Set(index4%_capacity);
_bitmap.Set(index5%_capacity);
}
bool IsIn(const K&key)
{
size_t index1 = HashFunc1()(key);
if (!_bitmap.Test(index1%_capacity))
{
return false;
}
size_t index2 = HashFunc2()(key);
if (!_bitmap.Test(index2%_capacity))
{
return false;
}
size_t index3 = HashFunc3()(key);
if (!_bitmap.Test(index3%_capacity))
{
return false;
}
size_t index4 = HashFunc4()(key);
if (!_bitmap.Test(index4%_capacity))
{
return false;
}
size_t index5 = HashFunc5()(key);
if (!_bitmap.Test(index5%_capacity))
{
return false;
}
return true;
}
protected:
unsigned long _GetNextPrime(unsigned long num)
{
const int _PrimeSize = 28;
static const unsigned long _PrimeList[_PrimeSize] =
{
53ul, 97ul, 193ul, 389ul, 769ul,
1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
1610612741ul, 3221225473ul, 4294967291ul
};
size_t pos = 0;
while (pos < _PrimeSize)
{
if (_PrimeList[pos] > num)
{
break;
}
++pos;
}
return _PrimeList[pos];
}
private:
BitSet _bitmap;
size_t _capacity;
};
void Test2()
{
BitSet bitmap(60);
for (int i = 4; i < 10; i++)
{
bitmap.Set(i);
}
for (int i = 0; i < 20; i++)
{
cout << i << ":" << bitmap.Test(i) << endl;
}
}
void Test1()
{
BloomFilter<>bf(30);
string s11("www");
bf.Set(s11);
bf.Set("张三");
bf.Set("王五");
bf.Set("李四");
cout << bf.IsIn("布隆过滤器") << endl;
cout << bf.IsIn("ww") << endl;
cout << bf.IsIn("www") << endl;
cout << bf.IsIn("王五") << endl;
}
int main()
{
Test1();
return 0;
}
2.–布隆过滤器的扩展:如何扩展BloomFilter使得它支持删除元素的操作?请设计实现一个支持删除的布隆过滤器.
//支持Reset的bloomfliter
template<typename K=string
,class HashFunc1=_HashFunc1
, class HashFunc2 = _HashFunc2
, class HashFunc3= _HashFunc3
, class HashFunc4= _HashFunc4
, class HashFunc5 = _HashFunc5>
class BloomFilter
{
public:
BloomFilter(size_t range)
{
_bitmap.resize(range*5); //为了减少误判,提高精度,用5个位置来表示一个数
}
void Set(const K& key) //要设置为1,必须将5个位置都设置
{
size_t index1 = HashFunc1()(key) % _bitmap.size();
size_t index2 = HashFunc2()(key) % _bitmap.size();
size_t index3 = HashFunc3()(key) % _bitmap.size();
size_t index4 = HashFunc4()(key) % _bitmap.size();
size_t index5 = HashFunc5()(key) % _bitmap.size();
_bitmap[index1]++;
_bitmap[index2]++;
_bitmap[index3]++;
_bitmap[index4]++;
_bitmap[index5]++;
}
bool ReSet(const K& key) //采用引用计数的方式复位
{
size_t index1 = HashFunc1()(key) % _bitmap.size();
size_t index2 = HashFunc2()(key) % _bitmap.size();
size_t index3 = HashFunc3()(key) % _bitmap.size();
size_t index4 = HashFunc4()(key) % _bitmap.size();
size_t index5 = HashFunc5()(key) % _bitmap.size();
if (_bitmap[index1] == 0 ||
_bitmap[index2] == 0 ||
_bitmap[index3] == 0 ||
_bitmap[index4] == 0 ||
_bitmap[index5] == 0) //只要有一个为0,说明这个key不存在
return false;
//要是都不为0,才减一
_bitmap[index1]--;
_bitmap[index2]--;
_bitmap[index3]--;
_bitmap[index4]--;
_bitmap[index5]--;
return true;
}
bool Test(const K& key)
{
size_t index1 = HashFunc1()(key) % _bitmap.size();
size_t index2 = HashFunc2()(key) % _bitmap.size();
size_t index3 = HashFunc3()(key) % _bitmap.size();
size_t index4 = HashFunc4()(key) % _bitmap.size();
size_t index5 = HashFunc5()(key) % _bitmap.size();
//只有五个位置都为1,才存在
if (_bitmap[index1] != 0 &&
_bitmap[index2] != 0 &&
_bitmap[index3] != 0 &&
_bitmap[index4] != 0 &&
_bitmap[index5] != 0)
return true;
return false;
}
private:
vector<size_t> _bitmap;
};