简单布隆过滤器实现、布隆过滤器扩展

布隆过滤器

1.实现一个简单的布隆过滤器。

如果想要判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表,树等等数据结构都是这种思路.
但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢(O(n),O(logn))。不过世界上还有一种叫作散列表(又叫哈希表,Hash
table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit
array)中的一个点。这样一来,我们只要看看这个点是不是1就可以知道集合中有没有它了。这就是布隆过滤器的基本思想。

优点

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外,
Hash函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。
布隆过滤器可以表示全集,其它任何数据结构都不能; k和m相同,使用同一组Hash函数的两个布隆过滤器的交并差运算可以使用位操作进行。
布隆过滤器

缺点

但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。
另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1,
这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面.
这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。 在降低误算率方面,有不少工作,使得出现了很多布隆过滤器的变种。

代码实现:

#include<iostream>
#include"BitSet.h"
using namespace std;


//布隆过滤器
//实现思路: 位图+hash
//hash 确定位置进行定位

template<class K>
struct _HashFunc1
{
    size_t BKDRHash(const char *str)
    {
        register size_t hash = 0;
        while (size_t ch = (size_t)*str++)
        {
            hash = hash * 131 + ch;   // 也可以乘以31、131、1313、13131、131313.. 

        }
        return hash;
    }

    size_t operator()(const string &s)
    {
        return BKDRHash(s.c_str());
    }
};

template<class K>
struct _HashFunc2
{
    size_t SDBMHash(const char *str)
    {
        register size_t hash = 0;
        while (size_t ch = (size_t)*str++)
        {
            hash = 65599 * hash + ch;
            //hash = (size_t)ch + (hash << 6) + (hash << 16) - hash; 
        }
        return hash;
    }

    size_t operator()(const string &s)
    {
        return SDBMHash(s.c_str());
    }
};

template<class K>
struct _HashFunc3
{
    size_t RSHash(const char *str)
    {
        if (!*str)        
            return 0;
        register size_t hash = 1315423911;
        while (size_t ch = (size_t)*str++)
        {
            hash ^= ((hash << 5) + ch + (hash >> 2));
        }
        return hash;
    }

    size_t operator()(const string &s)
    {
        return RSHash(s.c_str());
    }
};

template<class K>
struct _HashFunc4
{
    size_t RSHash(const char *str)
    {
        register size_t hash = 0;
        size_t magic = 63689;
        while (size_t ch = (size_t)*str++)
        {
            hash = hash * magic + ch;
            magic *= 378551;
        }
        return hash;
    }

    size_t operator()(const string&s)
    {
        return RSHash(s.c_str());
    }
};

template<class K>
struct _HashFunc5
{
    size_t RSHash(const char *str)
    {
        register size_t hash = 0;
        size_t ch;
        for (long i = 0; ch = (size_t)*str++; i++)
        {
            if ((i & 1) == 0)
            {
                hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
            }
            else
            {
                hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
            }
        }
        return hash;
    }

    size_t operator()(const string &s)
    {
        return RSHash(s.c_str());
    }
};
template<class K=string,
class HashFunc1=_HashFunc1<K>,
class HashFunc2=_HashFunc2<K>,
class HashFunc3=_HashFunc3<K>,
class HashFunc4=_HashFunc4<K>,
class HashFunc5 =_HashFunc5<K >>
class BloomFilter
{
public:
    BloomFilter(size_t size)
    {
        _capacity = _GetNextPrime(size);
        _bitmap.Resize(_capacity);
    }

    void Set(const K &key)
    {
        size_t index1 = HashFunc1()(key);
        size_t index2 = HashFunc2()(key);
        size_t index3 = HashFunc3()(key);
        size_t index4 = HashFunc4()(key);
        size_t index5 = HashFunc5()(key);

        _bitmap.Set(index1%_capacity);
        _bitmap.Set(index2%_capacity);
        _bitmap.Set(index3%_capacity);
        _bitmap.Set(index4%_capacity);
        _bitmap.Set(index5%_capacity);
    }

    bool IsIn(const K&key)
    {
        size_t index1 = HashFunc1()(key);
        if (!_bitmap.Test(index1%_capacity))
        {
            return false;
        }
        size_t index2 = HashFunc2()(key);
        if (!_bitmap.Test(index2%_capacity))
        {
            return false;
        }
        size_t index3 = HashFunc3()(key);
        if (!_bitmap.Test(index3%_capacity))
        {
            return false;
        }
        size_t index4 = HashFunc4()(key);
        if (!_bitmap.Test(index4%_capacity))
        {
            return false;
        }
        size_t index5 = HashFunc5()(key);
        if (!_bitmap.Test(index5%_capacity))
        {
            return false;
        }
        return true;
    }


protected:
    unsigned long _GetNextPrime(unsigned long num)
    {
        const int _PrimeSize = 28;
        static const unsigned long _PrimeList[_PrimeSize] =
        {
            53ul, 97ul, 193ul, 389ul, 769ul,
            1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
            49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
            1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
            50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
            1610612741ul, 3221225473ul, 4294967291ul
        };
        size_t pos = 0;
        while (pos < _PrimeSize)
        {
            if (_PrimeList[pos] > num)
            {
                break;
            }
            ++pos;
        }
        return _PrimeList[pos];
    }


private:
    BitSet _bitmap;
    size_t _capacity;

};



void Test2()
{
    BitSet bitmap(60);
    for (int i = 4; i < 10; i++)
    {
        bitmap.Set(i);
    }

    for (int i = 0; i < 20; i++)
    {
        cout << i << ":" << bitmap.Test(i) << endl;
    }

}

void Test1()
{ 
    BloomFilter<>bf(30);
    string s11("www");
    bf.Set(s11);
    bf.Set("张三");
    bf.Set("王五");
    bf.Set("李四");

    cout << bf.IsIn("布隆过滤器") << endl;
    cout << bf.IsIn("ww") << endl;
    cout << bf.IsIn("www") << endl;
    cout << bf.IsIn("王五") << endl;
}


int main()
{
    Test1();
    return 0;
}

2.–布隆过滤器的扩展:如何扩展BloomFilter使得它支持删除元素的操作?请设计实现一个支持删除的布隆过滤器.

//支持Reset的bloomfliter  

template<typename K=string  
    ,class HashFunc1=_HashFunc1  
    , class HashFunc2 = _HashFunc2  
    , class HashFunc3= _HashFunc3  
    , class HashFunc4= _HashFunc4  
    , class HashFunc5 = _HashFunc5>  
class BloomFilter  
{  
public:  
    BloomFilter(size_t range)  
    {  
        _bitmap.resize(range*5);           //为了减少误判,提高精度,用5个位置来表示一个数  
    }  

    void Set(const K& key)          //要设置为1,必须将5个位置都设置  
    {  
        size_t index1 = HashFunc1()(key) % _bitmap.size();  
        size_t index2 = HashFunc2()(key) % _bitmap.size();  
        size_t index3 = HashFunc3()(key) % _bitmap.size();  
        size_t index4 = HashFunc4()(key) % _bitmap.size();  
        size_t index5 = HashFunc5()(key) % _bitmap.size();  

        _bitmap[index1]++;  
        _bitmap[index2]++;  
        _bitmap[index3]++;  
        _bitmap[index4]++;  
        _bitmap[index5]++;  
    }  

    bool ReSet(const K& key)          //采用引用计数的方式复位  
    {  
        size_t index1 = HashFunc1()(key) % _bitmap.size();  
        size_t index2 = HashFunc2()(key) % _bitmap.size();  
        size_t index3 = HashFunc3()(key) % _bitmap.size();  
        size_t index4 = HashFunc4()(key) % _bitmap.size();  
        size_t index5 = HashFunc5()(key) % _bitmap.size();  
        if (_bitmap[index1] == 0 ||  
            _bitmap[index2] == 0 ||  
            _bitmap[index3] == 0 ||  
            _bitmap[index4] == 0 ||  
            _bitmap[index5] == 0)                   //只要有一个为0,说明这个key不存在  
            return false;  
        //要是都不为0,才减一  
        _bitmap[index1]--;  
        _bitmap[index2]--;  
        _bitmap[index3]--;  
        _bitmap[index4]--;  
        _bitmap[index5]--;  
        return true;  
    }  

    bool Test(const K& key)  
    {  
        size_t index1 = HashFunc1()(key) % _bitmap.size();  
        size_t index2 = HashFunc2()(key) % _bitmap.size();  
        size_t index3 = HashFunc3()(key) % _bitmap.size();  
        size_t index4 = HashFunc4()(key) % _bitmap.size();  
        size_t index5 = HashFunc5()(key) % _bitmap.size();  

        //只有五个位置都为1,才存在  
        if (_bitmap[index1] != 0 &&  
            _bitmap[index2] != 0 &&  
            _bitmap[index3] != 0 &&  
            _bitmap[index4] != 0 &&  
            _bitmap[index5] != 0)  
            return true;  
        return false;  
    }  
private:  
    vector<size_t> _bitmap;  
};  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值