计算最大公约数和最小公倍数的五种算法

1 短除法

1.1 方法

短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。

1.1 C代码


#include <math.h>
#include <stdio.h>

int greatestCommonDivisor(int a, int b) {
  int big = fmax(a, b);
  int small = fmin(a, b);
  int divisor = 1;
  for (int i = 2; i < small; ++i) {
    while (big % i == 0 && small % i == 0) {
      big /= i;
      small /= i;
      divisor *= i;
    }
  }
  return divisor;
}


int lowestCommonMutiply(int a, int b) {
  return a * b / greatestCommonDivisor(a, b);
}

int main() {
  printf("%d %d", greatestCommonDivisor(6, 4), lowestCommonMutiply(6, 4));
}

2 穷举法

2.1 算法

穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数。
图示:
在这里插入图片描述

2.2 C代码

#include <math.h>
#include <stdio.h>

int greatestCommonDivisor(int a, int b) {
  int big = fmax(a, b);
  int small = fmin(a, b);
  int divisor = small;
  while (big % divisor || small % divisor) {
    --divisor;
  }
  return divisor;
}

int lowestCommonMutiply(int a, int b) {
  return a * b / greatestCommonDivisor(a, b);
}

int main() {
  printf("%d %d", greatestCommonDivisor(6, 4), lowestCommonMutiply(6, 4));
}

3 辗转相除法(欧几里得算法)

3.1 算法

  • 定义: gcd(a,b) 为整数 a 与 b 的最大公约数

  • 引理:gcd(a,b)=gcd(b,a%b)

  • 证明:
    设 r=a%b , c=gcd(a,b)
    则 a=xc , b=yc , 其中x , y互质
    r=a%b=a-pb=xc-pyc=(x-py)c
    而b=yc
    可知:y 与 x-py 互质
    证明:
    假设 y 与 x-py 不互质
    设 y=nk , x-py=mk , 且 k>1 (因为互质)
    将 y 带入可得
    x-pnk=mk
    x=(pn+m)k
    则 a=xc=(pn+m)kc , b=yc=nkc
    那么此时 a 与 b 的最大公约数为 kc 不为 k
    与原命题矛盾,则 y 与 x-py 互质
    因为 y 与 x-py 互质,所以 r 与 b 的最大公约数为 c
    即 gcd(b,r)=c=gcd(a,b)
    得证。
    当a%b=0时,gcd(a,b)=b

  • 算法过程为:

    1. 前提:设两数为a,b设其中a 做被除数,b做除数,temp为余数
    2. 大数放a中、小数放b中;
    3. 求a/b的余数;
    4. 若temp=0则b为最大公约数;
    5. 如果temp!=0则把b的值给a、temp的值给a;
    6. 返回第二步;
  • 图示:
    在这里插入图片描述
    在这里插入图片描述

3.2 C代码

#include <math.h>
#include <stdio.h>

int greatestCommonDivisor(int a, int b) {
  int big = fmax(a, b);
  int small = fmin(a, b);
  int remainder = big % small;
  while (remainder) {
    big = small;
    small = remainder;
    remainder = big % small;
  }
  return small;
}

int lowestCommonMutiply(int a, int b) {
  return a * b / greatestCommonDivisor(a, b);
}

int main() {
  printf("%d %d", greatestCommonDivisor(6, 4), lowestCommonMutiply(6, 4));
}

更精简的算法,使用了异或:

#include <math.h>
#include <stdio.h>

int greatestCommonDivisor(int a, int b) {
	if (a > b) {
		while(b^=a^=b^=a%=b);
		return a;
	} else {
		while(a^=b^=a^=b%=a);
		return b;
	}
}

int lowestCommonMutiply(int a, int b) {
  return a * b / greatestCommonDivisor(a, b);
}

int main() {
  printf("%d %d", greatestCommonDivisor(6, 4), lowestCommonMutiply(6, 4));
}

4 辗转相减法 (更相减损法,九章算术, 尼考曼彻斯法)

4.1 方法

  • 更相减损术,是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”
  • 翻译成现代语言如下:
    第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
    第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
    则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。
    其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法。所以更相减损法也叫等值算法。
    在这里插入图片描述

4.2 C代码

#include <math.h>
#include <stdio.h>

int greatestCommonDivisor(int a, int b) {
  int big = fmax(a, b);
  int small = fmin(a, b);
  int divisor = 1;
  while (big % 2 == 0 && small % 2 == 0) {
    big >>= 1;
    small >>= 1;
    divisor <<= 1;
  }
  int delta;
  delta = big - small;
  while (delta != small) {
    big = fmax(delta, small);
    small = fmin(delta, small);
  }
  divisor *= delta;
  return divisor;
}

int lowestCommonMutiply(int a, int b) {
  return a * b / greatestCommonDivisor(a, b);
}

int main() {
  printf("%d %d", greatestCommonDivisor(6, 4), lowestCommonMutiply(6, 4));
}

5 Stein算法(辗转相减优化版)

5.1 方法

  • 欧几里德算法是计算两个数最大公约数的传统算法,无论从理论还是从实际效率上都是很好的。但是却有一个致命的缺陷,这个缺陷在素数比较小的时候一般是感觉不到的,只有在大素数时才会显现出来:一般实际应用中的整数很少会超过64位(当然现在已经允许128位了),对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,比如说RSA加密算法至少要求500bit密钥长度,设计这样的程序迫切希望能够抛弃除法和取模。

  • Stein算法很好的解决了欧几里德算法中的这个缺陷,Stein算法只有整数的移位和加减法。下面就来说一下Stein算法的原理:

    1. 若a和b都是偶数,则记录下公约数2,然后都除2(即右移1位);
    2. 若其中一个数是偶数,则偶数除2,因为此时2不可能是这两个数的公约数了
    3. 若两个都是奇数,则a = |a-b|,b = min(a,b),因为若d是a和b的公约数,那么d也是|a-b|和min(a,b)的公约数。

5.2 C代码


#include <math.h>
#include <stdio.h>

int greatestCommonDivisor(int a, int b) {
  int divisor = 1;
  while (a || b) {
    if (a % 2 == 0 && b % 2 == 0) {
      a >>= 1;
      divisor <<= 1;
    } else if (a % 2 == 0) {
      a >>= 1;
    } else if (b % 2 == 0) {
      b >>= 1;
    } else {
      a = abs(a - b);
      b = fmin(a, b);
    }
  }

  return divisor;
}

int lowestCommonMutiply(int a, int b) {
  return a * b / greatestCommonDivisor(a, b);
}

int main() {
  printf("%d %d", greatestCommonDivisor(6, 4), lowestCommonMutiply(6, 4));
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值