1. 基础概念
-
AI(Artificial Intelligence,人工智能)
模拟人类智能的机器系统,具备学习、推理、决策等能力。 -
Machine Learning(机器学习,ML)
让计算机通过数据自动学习规律,无需显式编程。例如:垃圾邮件分类、商品推荐。 -
Deep Learning(深度学习)
基于神经网络的机器学习方法,擅长处理图像、语音等复杂数据。典型应用:人脸识别、自动驾驶。 -
Neural Network(神经网络)
模拟人脑神经元结构的计算模型,通过多层节点提取数据特征。
2. 核心技术
-
Natural Language Processing(NLP,自然语言处理)
让机器理解、生成人类语言的技术。应用场景:聊天机器人、翻译系统。 -
Large Language Model (LLM, 大语言模型)
基于海量文本数据训练的深层神经网络模型,如 GPT、BERT 等,能够理解并生成自然语言,支持复杂对话和内容创作。 -
Computer Vision(CV,计算机视觉)
使机器能“看懂”图像或视频。应用:医学影像分析、安防监控。 -
Reinforcement Learning(强化学习)
通过试错和奖励机制训练智能体。典型例子:AlphaGo、机器人控制。 -
Generative Adversarial Network(GAN,生成对抗网络)
由生成器和判别器组成的对抗系统,用于生成逼真数据(如Deepfake)。 -
Prompt Engineering (提示词工程)
在使用大语言模型时,通过设计有效的提示语(prompt)来引导模型生成所需输出的技术,近年来成为热门技能。 -
Transfer Learning (迁移学习)
将一个领域学到的知识迁移到另一个相关领域,以减少数据需求和训练时间的技术方法。 -
Multimodal (多模态)
指 AI 系统能同时处理多种数据类型(如文字、图像、语音)的能力,提高跨领域应用的灵活性和效果。 -
Parameters (参数)
模型内部通过训练自动学习并调整的数值(例如神经网络中的权重和偏置)。 -
Hyperparameters(超参数)
在训练前需要手动设置的配置项,如学习率、网络层数等,对模型训练效果有重要影响。
3. 数据相关
-
Big Data(大数据)
海量、高增长、多样化的数据集合,是AI模型的训练基础。 -
Data Mining(数据挖掘)
从数据中提取隐藏规律的技术,常用于用户行为分析、市场预测。 -
Labeling(数据标注)
为数据添加标签(如标记图片中的物体),供监督学习模型训练使用。
4. 模型与算法
-
Supervised Learning(监督学习)
使用带标签的数据训练模型,如预测房价、疾病诊断。 -
Unsupervised Learning(无监督学习)
从无标签数据中发现模式,如客户分群、异常检测。 -
Transfer Learning(迁移学习)
将已训练模型的知识迁移到新任务,节省训练资源。例如:用ImageNet预训练模型做医学图像分类。 -
Transformer
基于自注意力机制的模型架构,革新了NLP领域(如GPT、BERT)。
5. 应用场景
-
Autonomous Driving(自动驾驶)
通过AI实现车辆自主行驶,核心技术包括传感器融合、路径规划。 -
Recommendation System(推荐系统)
根据用户行为推荐内容,如抖音视频推荐、电商商品推荐。 -
Large Language Model(大模型)
参数量巨大的预训练模型(如GPT-4),具备多任务处理能力。
6. 行业术语
-
AGI(Artificial General Intelligence,通用人工智能)
具备人类水平的多领域智能,尚未实现。 -
AIoT(人工智能物联网)
AI与物联网结合,如智能家居、工业设备预测性维护。 -
Edge AI(边缘AI)
在本地设备(而非云端)运行AI模型,降低延迟,保护隐私。 -
MaaS(Model as a Service,模型即服务)
通过API提供预训练模型,如OpenAI的GPT接口。 -
Agent (智能体)
能够感知环境、作出决策并采取行动的自主 AI 系统,如自动驾驶汽车中的控制模块或聊天机器人。 -
Expert System (专家系统)
AI 的早期形式,模拟人类专家的决策过程,用于解决特定领域问题,如医疗诊断系统等。 -
AIGC (AI-Generated Content, AI生成内容)
利用 AI 技术生成的各种内容(文本、图像、视频等),近年来在内容创作和营销等领域获得广泛应用。
7. 伦理与治理
-
Algorithm Bias(算法偏见)
因数据或设计导致的歧视性结果,如招聘系统中的性别偏见。 -
Explainable AI(可解释AI)
让AI决策过程透明化,增强用户信任。 -
Federated Learning(联邦学习)
分布式训练模型,保护用户数据隐私。