AI入门1:关键概念

1. 基础概念

  • AI(Artificial Intelligence,人工智能)​
    模拟人类智能的机器系统,具备学习、推理、决策等能力。

  • Machine Learning(机器学习,ML)​
    让计算机通过数据自动学习规律,无需显式编程。例如:垃圾邮件分类、商品推荐。

  • Deep Learning(深度学习)​
    基于神经网络的机器学习方法,擅长处理图像、语音等复杂数据。典型应用:人脸识别、自动驾驶。

  • Neural Network(神经网络)​
    模拟人脑神经元结构的计算模型,通过多层节点提取数据特征。


2. 核心技术

  • Natural Language Processing(NLP,自然语言处理)​
    让机器理解、生成人类语言的技术。应用场景:聊天机器人、翻译系统。

  • Large Language Model (LLM, 大语言模型)
    基于海量文本数据训练的深层神经网络模型,如 GPT、BERT 等,能够理解并生成自然语言,支持复杂对话和内容创作。

  • Computer Vision(CV,计算机视觉)​
    使机器能“看懂”图像或视频。应用:医学影像分析、安防监控。

  • Reinforcement Learning(强化学习)​
    通过试错和奖励机制训练智能体。典型例子:AlphaGo、机器人控制。

  • Generative Adversarial Network(GAN,生成对抗网络)​
    由生成器和判别器组成的对抗系统,用于生成逼真数据(如Deepfake)。

  • Prompt Engineering (提示词工程)
    在使用大语言模型时,通过设计有效的提示语(prompt)来引导模型生成所需输出的技术,近年来成为热门技能。

  • Transfer Learning (迁移学习)
    将一个领域学到的知识迁移到另一个相关领域,以减少数据需求和训练时间的技术方法。

  • Multimodal (多模态)
    指 AI 系统能同时处理多种数据类型(如文字、图像、语音)的能力,提高跨领域应用的灵活性和效果。

  • Parameters (参数) 
    模型内部通过训练自动学习并调整的数值(例如神经网络中的权重和偏置)。

  • Hyperparameters(超参数)
    在训练前需要手动设置的配置项,如学习率、网络层数等,对模型训练效果有重要影响。


3. 数据相关

  • Big Data(大数据)​
    海量、高增长、多样化的数据集合,是AI模型的训练基础。

  • Data Mining(数据挖掘)​
    从数据中提取隐藏规律的技术,常用于用户行为分析、市场预测。

  • Labeling(数据标注)​
    为数据添加标签(如标记图片中的物体),供监督学习模型训练使用。


4. 模型与算法

  • Supervised Learning(监督学习)​
    使用带标签的数据训练模型,如预测房价、疾病诊断。

  • Unsupervised Learning(无监督学习)​
    从无标签数据中发现模式,如客户分群、异常检测。

  • Transfer Learning(迁移学习)​
    将已训练模型的知识迁移到新任务,节省训练资源。例如:用ImageNet预训练模型做医学图像分类。

  • Transformer
    基于自注意力机制的模型架构,革新了NLP领域(如GPT、BERT)。


5. 应用场景

  • Autonomous Driving(自动驾驶)​
    通过AI实现车辆自主行驶,核心技术包括传感器融合、路径规划。

  • Recommendation System(推荐系统)​
    根据用户行为推荐内容,如抖音视频推荐、电商商品推荐。

  • Large Language Model(大模型)​
    参数量巨大的预训练模型(如GPT-4),具备多任务处理能力。


6. 行业术语

  • AGI(Artificial General Intelligence,通用人工智能)​
    具备人类水平的多领域智能,尚未实现。

  • AIoT(人工智能物联网)​
    AI与物联网结合,如智能家居、工业设备预测性维护。

  • Edge AI(边缘AI)​
    在本地设备(而非云端)运行AI模型,降低延迟,保护隐私。

  • MaaS(Model as a Service,模型即服务)​
    通过API提供预训练模型,如OpenAI的GPT接口。

  • Agent (智能体)
    能够感知环境、作出决策并采取行动的自主 AI 系统,如自动驾驶汽车中的控制模块或聊天机器人。

  • Expert System (专家系统)
    AI 的早期形式,模拟人类专家的决策过程,用于解决特定领域问题,如医疗诊断系统等。

  • AIGC (AI-Generated Content, AI生成内容)
    利用 AI 技术生成的各种内容(文本、图像、视频等),近年来在内容创作和营销等领域获得广泛应用。


7. 伦理与治理

  • Algorithm Bias(算法偏见)​
    因数据或设计导致的歧视性结果,如招聘系统中的性别偏见。

  • Explainable AI(可解释AI)​
    让AI决策过程透明化,增强用户信任。

  • Federated Learning(联邦学习)​
    分布式训练模型,保护用户数据隐私。

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    lizz666

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值