数论 - 中国剩余定理 (互质|非互质)

本文详细介绍了中国剩余定理的应用及其实现算法。探讨了一元线性同余方程组的解法,包括互质与非互质情况下的求解过程,并提供了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

互质:

    

中国剩余定理给出了以下的一元线性同余方程组:
中国剩余定理1
 
中国剩余定理说明:假设整数 m1, m2, ... , mn两两互质,则对任意的整数: a1, a2, ... , an,
 方程组(S)
有解,并且通解可以用如下方式构造得到:
  中国剩余定理2
是整数 m1, m2, ... , mn的乘积,并设
  中国剩余定理3
是除了 mi以外的 n- 1个整数的乘积。
  中国剩余定理4
这个就是逆元了
  中国剩余定理5 
通解形式为
  中国剩余定理6 
在模M的意义下,方程组(S)只有一个解:
  中国剩余定理7
 

——————————摘抄自百度百科。

/**
扩展欧几里得
**/
void ex_gcd(LL a,LL b,LL &d,LL &x,LL &y){
    if(!b){
        d=a,x=1,y=0;
    }else{
        ex_gcd(b,a%b,d,y,x);
        y-=x*(a/b);
    }
}
/**
求t关于p的逆元
**/
LL inv(LL t,LL p){
    LL d,x,y;
    ex_gcd(t,p,d,x,y);
    return d == 1?(x%p+p)%p:-1;
}
/**中国剩余定理**/
LL China(int n,LL *a,LL *m){
    LL M = 1,ret = 0;
    for(int i=0;i<n;i++)M*=m[i];
    for(int i=0;i<n;i++){
        LL w = M/m[i];
        ret = (ret+w*inv(w,m[i])*a[i])%M;
    }
    return ret;
}

非互质:

——————网络图片

 

非互质证明

 

、代码:

 

    

LL China(int len,LL *a,LL *r){
    LL M=a[0],R=r[0],x,y,d;
    for(int i=1;i<len;i++){
        ex_gcd(M,a[i],d,x,y);
        if((R-r[i])%d!=0) return -1;
        x=(R-r[i])/d*x%a[i];
        R-=x*M;
        M=M/d*a[i];
        R%=M;
    }
    return (R%M+M)%M;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值