互质:
中国剩余定理给出了以下的一元线性同余方程组:

中国剩余定理说明:假设整数
m1,
m2, ... ,
mn两两互质,则对任意的整数:
a1,
a2, ... ,
an,
方程组(S)
有解,并且通解可以用如下方式构造得到:
设
是整数
m1,
m2, ... ,
mn的乘积,并设
是除了
mi以外的
n- 1个整数的乘积。


设
这个就是逆元了


通解形式为
在模M的意义下,方程组(S)只有一个解:


——————————摘抄自百度百科。
/**
扩展欧几里得
**/
void ex_gcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){
d=a,x=1,y=0;
}else{
ex_gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
/**
求t关于p的逆元
**/
LL inv(LL t,LL p){
LL d,x,y;
ex_gcd(t,p,d,x,y);
return d == 1?(x%p+p)%p:-1;
}
/**中国剩余定理**/
LL China(int n,LL *a,LL *m){
LL M = 1,ret = 0;
for(int i=0;i<n;i++)M*=m[i];
for(int i=0;i<n;i++){
LL w = M/m[i];
ret = (ret+w*inv(w,m[i])*a[i])%M;
}
return ret;
}
非互质:
——————网络图片
、代码:
LL China(int len,LL *a,LL *r){
LL M=a[0],R=r[0],x,y,d;
for(int i=1;i<len;i++){
ex_gcd(M,a[i],d,x,y);
if((R-r[i])%d!=0) return -1;
x=(R-r[i])/d*x%a[i];
R-=x*M;
M=M/d*a[i];
R%=M;
}
return (R%M+M)%M;
}