序列子区间异或和

序列子区间异或和。


我们记录每个区间对每一位的贡献值;


如果我们对区间长度没有限制我们只需要我们前边的几个区间对第i位的贡献值。


xor[i]^xor[j] == 1

xor[i] == xor[j]^1


最后就是权值乘价值。


对于区间长度无任何要求

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100005
const ll Mod = 1e9+7;
ll a[N];
ll n;
ll Num[2];///代表第n位贡献 0 还是 1

ll Solve()
{
    ll res = 0;
    for(ll j=0; j<31; j++)
    {
        ll num = 0;
        memset(Num,0,sizeof(Num));
        Num[0]=1;///长度为 0 的区间可以存在且贡献值为0 的加一
        for(ll i=1; i<=n; i++)
        {
            Num[(a[i]>>j)&1]++;///更新的是我们要的区间值
            num = (num + (Num[!(a[i]>>j&1)]))%Mod;
        }
        res = (res + num*((1LL<<j)%Mod))%Mod;
    }
    return res;
}
int main()
{
    while(~scanf("%lld",&n))
    {
        memset(a,0,sizeof(a));
        for(ll i=1; i<=n; i++)
        {
            scanf("%lld",&a[i]);
        }
        for(ll i=1;i<=n;i++)
            a[i]=a[i-1]^a[i];
        printf("%lld\n",(Solve()+Mod)%Mod);
    }
}


例题:

小AA 的数列

题目描述

小AA找到了一个数列,她想要知道这个数列中所有长度为偶数的区间异或和之和 。
后来她发现这个问题太简单了,于是她加了一个限制,要求区间长度在[L,R]之间,
然后她就不会了。。。
请你告诉她问题的答案。

输入描述:

第一行三个数 n, L, R(n<=105,1<=L<=R<=n)
第二行n个数表示这个数列。(ai<=109)

输出描述:

输出一行表示答案,由于答案可能很大,请输出答案模109+7的值。
示例1

输入

5 1 5
1 2 3 4 5

输出

16
示例2

输入

4 1 4
4 4 4 4

输出

0
对区间进行处理:


#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100005
const ll Mod = 1e9+7;
ll a[N];
ll n,L,R;
ll Num[2][2];///第一个数组代表位置的奇偶性,第二个数代表第n位贡献 0 还是 1

ll Solve(ll l,ll r)
{
    ll res = 0;
    for(ll j=0; j<31; j++)
    {
        ll num = 0;
        memset(Num,0,sizeof(Num));
        for(ll i=1; i<=n; i++)
        {
            if(i>=l)Num[i&1][(a[i-l]>>j)&1]++;///更新的是我们要的区间值(从【i-l】-【i】)
            num = (num + (Num[i&1][!(a[i]>>j&1)]))%Mod;
            if(i>=r)Num[i&1][(a[i-r]>>j)&1]--;
        }
        res = (res + num*((1LL<<j)%Mod))%Mod;
    }
    return res;
}
int main()
{
    while(~scanf("%lld%lld%lld",&n,&L,&R))
    {
        if(L&1)L++;
        if(R&1)R--;
        memset(a,0,sizeof(a));
        if(L>R){
            printf("0\n");
            return 0;
        }
        for(ll i=1; i<=n; i++)
        {
            scanf("%lld",&a[i]);
        }
        for(ll i=1;i<=n;i++)
            a[i]=a[i-1]^a[i];
        printf("%lld\n",(Solve(L,R)+Mod)%Mod);
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值