【异构-推荐】推荐系统中的异构关系学习

这篇博客介绍了香港大学黄超的研究,聚焦于推荐系统中如何利用异构关系进行学习。通过图神经网络(GNN)技术处理用户和商品的不同异构关系,并采用自监督方式增强模型学习。研究还探讨了用户多行为信息的考虑,以及未来可能的方向,包括应对用户行为稀疏性、提高模型可解释性和多模态推荐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静喜欢大白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值